Giải phương trình
| x-2|^2014 + |x-3|^2014 = 1
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1,giải phương trình: x-1/2014+x-2/2013+x-3/2012+....+x-2014/1=2014
2, cho a2+b2+c2=a3+b3+c3=1. Tính S=a2+b2012+c2013
giúp mình với mình cần gấp
1)
\(\dfrac{x-1}{2014}+\dfrac{x-2}{2013}+\dfrac{x-3}{2012}+...+\dfrac{x-2014}{1}=2014\)
\(\Leftrightarrow\left(\dfrac{x-1}{2014}-1\right)+\left(\dfrac{x-2}{2013}-1\right)+...+\left(\dfrac{x-2014}{1}-1\right)=0\)
\(\Leftrightarrow\dfrac{x-2015}{2014}+\dfrac{x-2015}{2013}+...+\dfrac{x-2015}{1}=0\)
\(\Leftrightarrow\left(x-2025\right)\left(\dfrac{1}{2014}+\dfrac{1}{2013}+...+\dfrac{1}{1}\right)=0\)
\(\Leftrightarrow x=2015\)
Vậy \(S=\left\{2015\right\}\)
Giải phương trình: /x - 2014/^2015 + / x - 2015/^2014 = 1
TH1: |x-2014|^2015=1 và |x-2015|^2014=0
=>(x-2014=1 hoặc x-2014=-1) và x-2015=0
=>x=2015
TH2: |x-2014|^2015=0và |x-2015|^2014=1
=>x-2014=0 và (x-2015=1 hoặc x-2015=-1)
=>x=2014
Giải phương trình:
\(\dfrac{\sqrt{x-2012}-1}{x-2012}+\dfrac{\sqrt{y-2013}-1}{y-2013}+\dfrac{\sqrt{z-2014}-1}{z-2014}=\dfrac{3}{4}\)
Điều kiện: \(x\ge2012;y\ge2013;z\ge2014\)
Áp dụng bất đẳng thức Cauchy, ta có:
\(\left\{{}\begin{matrix}\dfrac{\sqrt{x-2012}-1}{x-2012}=\dfrac{\sqrt{4\left(x-2012\right)}-2}{2\left(x-2012\right)}\le\dfrac{\dfrac{4+x-2012}{2}-2}{2\left(x-2012\right)}=\dfrac{1}{4}\\\dfrac{\sqrt{y-2013}-1}{y-2013}=\dfrac{\sqrt{4\left(y-2013\right)}-2}{2\left(y-2013\right)}\le\dfrac{\dfrac{4+y-2013}{2}-2}{2\left(y-2013\right)}=\dfrac{1}{4}\\\dfrac{\sqrt{z-2014}-1}{z-2014}=\dfrac{\sqrt{4\left(z-2014\right)}-2}{2\left(z-2014\right)}\le\dfrac{\dfrac{4+z-2014}{2}-2}{2\left(z-2014\right)}=\dfrac{1}{4}\end{matrix}\right.\)
Cộng vế theo vế, ta được:
\(\dfrac{\sqrt{x-2012}-1}{x-2012}+\dfrac{\sqrt{y-2013}-1}{y-2013}+\dfrac{\sqrt{z-2014}-1}{z-2014}\le\dfrac{3}{4}\)
Đẳng thức xảy ra khi \(x=2016;y=2017;z=2018\)
Vậy....
Giải phương trình
a) 5x(x-2014)-x+2014=0
b) 5x(x-3)-x+3=0
c) x(x+2)-x2-6=0
giải phương trình :
(x/2012)+(x+1/2013)+(x+2/2014)+(x+3/2015)+(x+4/2016)=5
pt <=> (x/2012 - 1) + (x+1/2013 - 1) + (x+2/2014 - 1) + (x+3/2015 - 1) + (x+4/2016 - 1) = 0
<=> x-2012/2012 + x-2012/2013 + x-2012/2014 + x-2012/2015 + x-2012/2016 = 0
<=> (x-2012).(1/2012+1/2013+1/2014+1/2015+1/2016) = 0
<=> x-2012 = 0 ( vì 1/2012+1/2013+1/2014+1/2015+1/2016 > 0 )
<=> x=2012
Vậy x=2012
Tk mk nha
Ta có :
\(\frac{x}{2012}+\frac{x+1}{2013}+\frac{x+2}{2014}+\frac{x+3}{2015}+\frac{x+4}{2016}=5\)
\(\Leftrightarrow\)\(\left(\frac{x}{2012}-1\right)+\left(\frac{x+1}{2013}-1\right)+\left(\frac{x+2}{2014}-1\right)+\left(\frac{x+3}{2015}-1\right)+\left(\frac{x+4}{2016}-1\right)=5-5\)
\(\Leftrightarrow\)\(\frac{x-2012}{2012}+\frac{x-2012}{2013}+\frac{x-2012}{2014}+\frac{x-2012}{2015}+\frac{x-2012}{2016}=0\)
\(\Leftrightarrow\)\(\left(x-2012\right)\left(\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)=0\)
Vì \(\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\ne0\)
\(\Rightarrow\)\(x-2012=0\)
\(\Rightarrow\)\(x=2012\)
Vậy \(x=2012\)
Chúc bạn học tốt ~
Giải phương trình \(x^4+\sqrt{x^2+2014}=2014\)
3-x / 2013 -1= 2-x / 2014 - x / 2016
giải phương trình trên
Giải phương trình:
|x^2 + 2014| =1
Ta thấy :
x^2 >= 0
=> x^2+2014 >= 2014 > 1
=> |x^2+2014| > 1
=> pt vô nghiệm
Tk mk nha
x2 + 2014 > 0
Nên pt trở thành : x2 + 2014 = 1
<=> x^2 = -2013 (vô nghiệm)
Ta có :
\(x^2\ge0\)\(\left(\forall x\inℤ\right)\)
\(2014>0\)
\(\Rightarrow\)\(\left|x^2+2014\right|=x^2+2014\ge2014\)
Vậy phương trình không có nghiệm
Chúc bạn học tốt ~
Giải phương trình \(\frac{x-3}{2014}+\frac{x-2}{2015}=\frac{x-1}{1008}+\frac{x}{2017}-1\)