Những câu hỏi liên quan
NP
Xem chi tiết
PK
24 tháng 11 2015 lúc 15:34

Dễ dàng CM được (k2−4k+3)2≤A2<(k2−4k+6)2 
Do đó A2=(k2−4k+3)2 hoặc A2=(k2−4k+4)2hoặc A2=(k2−4k+5)2 
Từ đó tìm được k=1 hoặc k=3

Bình luận (0)
NH
Xem chi tiết
NH
Xem chi tiết
CV
Xem chi tiết
TN
29 tháng 5 2017 lúc 17:19

Ta có:

\(k^4-8k^3+23k^2-26k+10=\left(k-1\right)^2\left(k^2-6k+10\right)\)

Dễ thấy: \(\left(k-1\right)^2\) là số chính phương nên để \(k^4-8k^3+23k^2-26k+10\) là SCP thì \(k^2-6k+10\) phải là SCP

Đặt \(k^2-6k+10=n^2\) thì \(\left(n-k+3\right)\left(n+k-3\right)=1\)

Mà k nguyên suy ra \(k=3\)

Bình luận (0)
HN
29 tháng 5 2017 lúc 14:59

\(k=3\)

Bình luận (0)
HA
7 tháng 12 2017 lúc 17:04

K= 3 nha bạn

Bình luận (0)
NY
Xem chi tiết
Y
25 tháng 5 2019 lúc 23:47

\(A=k^4-8k^3+23k^2-26k+10\)

\(=k^2\left(k^2-2k+1\right)-6k\left(k^2-2k+1\right)+10\left(k^2-2k+1\right)\)

\(=\left(k^2-6k+10\right)\left(k-1\right)^2\)

+ TH1 : \(\left(k-1\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}A=0\\k=1\left(TM\right)\end{matrix}\right.\)

+ TH2 : \(\left(k-1\right)^2\ne0\)

=> A là số cp \(\Leftrightarrow k^2-6k+10\) là số cp

\(\Leftrightarrow k^2-6k+10=n^2\) ( \(n\in N\)* )

\(\Leftrightarrow\left(k-3\right)^2+1=n^2\)

\(\Leftrightarrow\left(n-k+3\right)\left(n+k-3\right)=1\)

Xét các TH rồi tìm đc \(k=3\)

Bình luận (0)
PB
Xem chi tiết
CT
30 tháng 5 2019 lúc 1:57

Đặt M = k 4 − 8 k 3 + 23 k 2 − 26 k + 10  

Ta có M = ( k 4 − 2 k 2 + 1 ) − 8 k ( k 2 − 2 k + 1 ) + 9 k 2 − 18 k + 9 = ( k 2 − 1 ) 2 − 8 k ( k − 1 ) 2 + 9 ( k − 1 ) 2 = ( k − 1 ) 2 . ( k − 3 ) 2 + 1   

M là số chính phương khi và chỉ khi  ( k − 1 ) 2 = 0  hoặc ( k − 3 ) 2 + 1  là số chính phương.

TH 1. ( k − 1 ) 2 = 0 ⇔ k = 1.  

TH 2. ( k − 3 ) 2 + 1  là số chính phương, đặt ( k − 3 ) 2 + 1 = m 2 ( m ∈ ℤ )  

⇔ m 2 − ( k − 3 ) 2 = 1 ⇔ ( m − k + 3 ) ( m + k − 3 ) = 1  

Vì  m , k ∈ ℤ ⇒ m − k + 3 ∈ ℤ , m + k − 3 ∈ ℤ  nên

m − k + 3 = 1 m + k − 3 = 1 hoặc  m − k + 3 = − 1 m + k − 3 = − 1 ⇔ m = 1 , k = 3 m = − 1 , k = 3 ⇒ k = 3

Vậy k = 1 hoặc k = 3 thì k 4 − 8 k 3 + 23 k 2 − 26 k + 10  là số chính phương

Bình luận (0)
H24
Xem chi tiết
H24
28 tháng 2 2021 lúc 11:32

`k^2-k+10`

`=(k-1/2)^2+9,75>9`

`k^2-k+10` là số chính phương nên đặt

`k^2-k+10=a^2(a>3,a in N)`

`<=>4k^2-4k+40=4a^2`

`<=>(2k-1)^2+39=4a^2`

`<=>(2k-1-2a)(2k-1+2a)=-39`

`=>2k-2a-1,2k+2a-1 in Ư(39)={+-1,+-3,+-13,+-39}`

`2k+2a>6`

`=>2k+2a-1> 5`

`=>2k+2a-1=39,2k-2a-1=-1`

`=>2k+2a=40,2k-2a=0`

`=>a=k,4k=40`

`=>k=10`

Vậy `k=10` thì `k^2-k+10` là SCP

Bình luận (1)
H24
28 tháng 2 2021 lúc 11:34

`+)2k+2a-1=13,2k-2a-1=-3`

`=>2k+2a=14,2k-2a=-2`

`=>k+a=7,k-a=-1`

`=>k=3`

Vậy `k=3` hoặc `k=10` thì ..........

Bình luận (0)
BB
Xem chi tiết
LC
Xem chi tiết
NT
28 tháng 5 2015 lúc 7:57

233

173

313

**** bạn

Bình luận (0)
RL
28 tháng 5 2015 lúc 8:01

để 23k là snt thì k=3(23k=233)

để 17k là snt thì k=3 (17k=173)

để 31k là snt thì k=3(31k=313)

đúng nhé

Bình luận (0)