Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
VN
Xem chi tiết
SM
Xem chi tiết
KN
24 tháng 11 2019 lúc 19:43

b) \(A=2x^2-x+2017\)

\(=\left(\sqrt{2}x\right)^2-2.\sqrt{2}x.\frac{1}{2\sqrt{2}}+\frac{1}{8}+\frac{16135}{8}\)

\(=\left(\sqrt{2}x-\frac{1}{2\sqrt{2}}\right)^2+\frac{16135}{8}\ge\frac{16135}{8}\)

Vậy \(A_{min}=\frac{16135}{8}\Leftrightarrow\sqrt{2}x-\frac{1}{2\sqrt{2}}=0\Leftrightarrow x=\frac{1}{4}\)

Bình luận (0)
 Khách vãng lai đã xóa
NC
26 tháng 11 2019 lúc 11:44

a) \(A=a^4-2a^3+2a^2-2a+2\)

\(=\left(a^4-2a^3+a^2\right)+\left(a^2-2a+1\right)+1\)

\(=\left(a^2-a\right)^2+\left(a-1\right)^2+1\ge1.\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}a^2-a=0\\a-1=0\end{cases}\Leftrightarrow}a=1\)

Vậy min A = 1 đạt tại a =1/

Bình luận (0)
 Khách vãng lai đã xóa
H24
28 tháng 11 2019 lúc 9:55

Có nhiều kiểu phân tích cho câu a lắm 

VD: \(A=\frac{\left(a^2-1\right)^2}{2}+\frac{\left(a-1\right)^4}{2}+1\ge1\)

Như có lẽ phân tích kiểu cô chi là đơn giản nhất

Bình luận (0)
 Khách vãng lai đã xóa
MM
Xem chi tiết
H24
1 tháng 11 2019 lúc 19:58

We have:\(A=\left(a-1\right)^2\left(a^2+1\right)+1\ge1\)

Equality holds when a = 1.

Done!

Bình luận (0)
 Khách vãng lai đã xóa
CN
Xem chi tiết
NL
22 tháng 2 2021 lúc 17:00

\(A=\left(a^4-2a^3+a^2\right)+2\left(a^2-2a+1\right)+3\)

\(A=\left(a^2-a\right)^2+2\left(a-1\right)^2+3\ge3\)

\(A_{min}=3\) khi \(a=1\)

Bình luận (1)
TS
Xem chi tiết
H24
Xem chi tiết
AL
10 tháng 4 2021 lúc 18:00

undefined

Bình luận (0)
NT
Xem chi tiết
ND
24 tháng 12 2021 lúc 16:32

A=a4−2a3+a2+a2−2a+1+1A=a4−2a3+a2+a2−2a+1+1

=a2(a2−2a+1)+a2−2a+1+1=a2(a2−2a+1)+a2−2a+1+1

=(a2+1)(a2−2a+1)+1=(a2+1)(a2−2a+1)+1

=(a2+1)(a−1)2+1≥1=(a2+1)(a−1)2+1≥1

Amin=1Amin=1 khi a=1

Bình luận (0)
 Khách vãng lai đã xóa
AM
Xem chi tiết
HN
Xem chi tiết
H24
8 tháng 1 2020 lúc 20:37

đây là theo ý mk nha. ko chắc chắn lắm 

ko vt lại đề

A=(a4-2a3+a2) +(2a2-4a+2)+3

A=(a2-a)2+ 2(a-1)2 +3 > hoặc = 3

Dấu = xảy ra <=> a=1

Bình luận (0)
 Khách vãng lai đã xóa