tìm giá trị nhỏ nhất của biểu thức A=\(a^4-2a^3+2a^2-2a+2\)
giúp nhanh nhé
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
a) Tìm giá trị nhỏ nhất của biểu thức: S= \(\dfrac{5x^4+4x^2+10}{x^4+2}\)
b) Tìm giá trị lớn nhất của biểu thức: T=\(\dfrac{2x^4-4x^2+8}{x^4+4}\)
c) Cho a là hằng số và a>0. Tìm giá trị nhỏ nhất của biểu thức: M=\(\dfrac{8y^8+2a\left(y-3\right)^2+2a^2}{4y^8+a^2}\)
Tìm giá trị nhỏ nhất của biểu thức:
a)A=a^4-2a^3+2a^2-2a+2
b)A=2x^2-x+2017
b) \(A=2x^2-x+2017\)
\(=\left(\sqrt{2}x\right)^2-2.\sqrt{2}x.\frac{1}{2\sqrt{2}}+\frac{1}{8}+\frac{16135}{8}\)
\(=\left(\sqrt{2}x-\frac{1}{2\sqrt{2}}\right)^2+\frac{16135}{8}\ge\frac{16135}{8}\)
Vậy \(A_{min}=\frac{16135}{8}\Leftrightarrow\sqrt{2}x-\frac{1}{2\sqrt{2}}=0\Leftrightarrow x=\frac{1}{4}\)
a) \(A=a^4-2a^3+2a^2-2a+2\)
\(=\left(a^4-2a^3+a^2\right)+\left(a^2-2a+1\right)+1\)
\(=\left(a^2-a\right)^2+\left(a-1\right)^2+1\ge1.\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}a^2-a=0\\a-1=0\end{cases}\Leftrightarrow}a=1\)
Vậy min A = 1 đạt tại a =1/
Có nhiều kiểu phân tích cho câu a lắm
VD: \(A=\frac{\left(a^2-1\right)^2}{2}+\frac{\left(a-1\right)^4}{2}+1\ge1\)
Như có lẽ phân tích kiểu cô chi là đơn giản nhất
tìm giá trị nhỏ nhất của biểu thức A = a4 - 2a3 + 2a2 - 2a + 2
We have:\(A=\left(a-1\right)^2\left(a^2+1\right)+1\ge1\)
Equality holds when a = 1.
Done!
Tìm giá trị nhỏ nhất của biểu thức A :
A= \(a^4-2a^3+3a^2-4a+5\)
\(A=\left(a^4-2a^3+a^2\right)+2\left(a^2-2a+1\right)+3\)
\(A=\left(a^2-a\right)^2+2\left(a-1\right)^2+3\ge3\)
\(A_{min}=3\) khi \(a=1\)
cho a>=0;b>=0 và 2a+3b<=6; 2a+b<=4.tìm giá trị nhỏ nhất và lớn nhất của biểu thức A=a^2-2a-b
Cho a ≥ 0, b ≥ 0; a và b thoả mãn 2a + 3b ≤ 6 và 2a + b ≤ 4. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức A = a² - 2a – b.
tìm giá trị lớn nhất của biểu thức
A= a4 - 2a3 + 2a2 - 2a + 2
A=a4−2a3+a2+a2−2a+1+1A=a4−2a3+a2+a2−2a+1+1
=a2(a2−2a+1)+a2−2a+1+1=a2(a2−2a+1)+a2−2a+1+1
=(a2+1)(a2−2a+1)+1=(a2+1)(a2−2a+1)+1
=(a2+1)(a−1)2+1≥1=(a2+1)(a−1)2+1≥1
Amin=1Amin=1 khi a=1
Cho a>=0, b>=0;a và b thoả mãn 2a+3b=<6,2a+b=<4.Tìm giá lớn nhất và giá trị nhỏ nhất của biểu thức A=a^2-2a-b
tìm giá trị nhỏ nhất của biểu thức:
A= a4 - 2a3 + 3a2 - 4a + 5
làm nhanh mk tích ạ.
đây là theo ý mk nha. ko chắc chắn lắm
ko vt lại đề
A=(a4-2a3+a2) +(2a2-4a+2)+3
A=(a2-a)2+ 2(a-1)2 +3 > hoặc = 3
Dấu = xảy ra <=> a=1