Cho ba số dương 0<=x<=y<=z<=1. Chứng minh: \(\frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}< =2\)
Cho ba số thực x, y, z thỏa mãn 3 x y(z x)
Biết rằng trong ba số đó có một số bằng 0, một số âm, một số dương. Hãy chỉ rõ
số nào bằng 0, số nào âm và số nào dương.
Em chung họ nguyển với anh em xin được làm quen với anh NGUYỄN THÀNH NAM
câu trả lời chả liên quan gì đến câu hỏi cả=_=
cho mình làm quen với
Cho ba số thực x, y, z thỏa mãn x^3 = y (z - x)
Biết rằng trong ba số đó có một só bằng 0, một số âm, một số dương. Hỏi số nào bằng 0, số nào âm và số nào dương.
- Nếu \(x=0\Rightarrow yz=0\Rightarrow\left[{}\begin{matrix}y=0\\z=0\end{matrix}\right.\) \(\Rightarrow\) có ít nhất 2 số bằng 0 trái giả thiết chỉ một số bằng 0 \(\Rightarrow x\ne0\)
- Nếu \(y=0\Rightarrow x^3=0\Rightarrow x=0\Rightarrow x=y=0\) trái giả thiết giống bên trên \(\Rightarrow y\ne0\)
\(\Rightarrow z=0\)
\(\Rightarrow x^3=-xy\Rightarrow x^2=-y\Rightarrow y=-x^2< 0\)
Vậy \(\left\{{}\begin{matrix}x>0\\y< 0\\z=0\end{matrix}\right.\)
Cho ba số nguyên a,b,c có một số là số âm,có một số là số dương và một số là 0.Ngoài ra cho biết thêm/a/=b2(b-c).Hỏi số nào là số âm,số nào là số dương và số nào là số 0.
nhanh lên các bạn ơi .ngày kia mình cần rồi .ai làm vừa ý mình mình link cho
Cho 3 số thực x, y, z thỏa mãn x^3 = y (z-x)
Biết rằng trong ba số đó có một số bằng 0, một số dương, một số âm. Hỏi số nào bằng 0, số nào âm và số nào dương.
giả sử x =0 khi đó y(z-0)=0 nên y=0 hoặc z=0 (trái vs giả thiết )
Giả sử y=0 khi đó x3=0 ( trái với giả thiết )
Vậy z=0
Khi z=0 ta có x3=y(-x)
<=> x2=-y
vì x2 \(\ge0\)với mọi x suy ra y\(\le\)0 nên y là số âm
vậy còn lại x là số dương
Ta có: x^3= y(z-x)
để đẳng thức trên có nghĩa => x,y khác 0=> z=0
TH1: x>0 ; y<0
x^3= -yx
x^3 > 0(*)
-yx > 0 tại y<0(**)
từ (*)(**) => thỏa mãn điều kiện
TH2: x<0; y>0
=> x^3<0; -xy> 0 vô lí
Vậy z=0; x >0 và y<0
Cho ba số x, y, z thuộc Z biết 1 số 0, 1 số dương, 1 số âm và thỏa đẳng thức: x2=y4(y-z)
1/ x hoặc y có thể bằng 0 được ko?
2/Tìm xem số nào là 0, số nào là dương, số nào là âm
giả sử x = 0
=) ta có : 0 = y4 ( y - z )
vô lí vì y4 ( y - z ) lớn hơn hoặc bé hơn 0
giả sử y = 0
=) ta có : x2 = 0 ( 0 - z ) = 0 ( vô lí )
vô lí vì x2 lớn hơn 0
=) x và y không thể = 0
1. Giả sử x=0 => y\(\ne\)0
=>x^2=0^2=0 => y^4(y-z)=0 => vì y khác 0 nên y-z=0 => y=z (loại)
giả xử y=0 =>x khác 0
=>y^4=0 =>y^4(y-z)=0 hay x^2=0 =>x=0 (loại)
Vậy x hoặc y ko thể =0
2. Từ câu 1=> z=0 =>x^2=y^5 => giả sử y âm =>y^5 âm , mà x^2 luôn dương => (loại)
vậy x âm y dương z=0
vì x và y không thể = 0 =) z = 0
=) ta có : x2=y4(y-0)
= x2=y5
xét : x2 nếu x là số dương thì x \(\ge\)0 ( Đ )
nếu x là âm thì x cũng \(\ge\)0 ( C )
xét y5 nếu y là âm =) y5\(\le\) 0 ( M )
nếu y là dương =) y5\(\ge\)0 ( :] )
Qua ( Đ ) , ( C ) , ( M ) , ( :] ) =) x \(\le\)0 và y\(\ge\)0
vậy : .......................................
không chắc lắm
HELP ME PLEASE!!!!!
CHO a là 1 số nguyên dương. Tích ab là 1 số nguyên dương thì:
A) b là số nguyên dương
B) b là số nguyên âm
C)b=0
D) Cả ba phương án đều sai
a)
giải thích:
b) a nguyên dương, nguyên âm thì tích ab là số nguyên âm.
c) b = 0 thì tích ab bằng 0.
Cho 20 số nguyên khác 0: a1;a2;a3;...;a20 thõa mãn đồng thời các điều kiện sau:
+ a1 là số dương
+ Tổng của ba số nguyên liên tiếp bất kì là một số dương
+ Tổng của tất cả 20 số đó là một số âm
Chứng minh rằng a2 < 0 và a3 > 0
Cho ba số a,b,c đôi một khác nhau thỏa mãn:
a/(b-c)+b/(c-a)+c/(a-b)=0
Chứng minh rằng trong ba số a,b,c phải có một số âm, một số dương.
Làm vô đây đài nhưng làm trog giấy ngắn lắm
1) a # b # c # a, thỏa a/(b-c) + b/(c-a) + c/(a-b) = 0
<=> a(c-a)(a-b) + b(a-b)(b-c) + c(b-c)(c-a) = 0
<=> -a(a-b)(a-c) - b(b-a)(b-c) - c(c-a)(c-b) = 0
<=> a(a-b)(a-c) + b(b-a)(b-c) + c(c-a)(c-b) = 0 (*)
từ (*) ta thấy a, b, c đối xứng nên không giãm tính tổng quát giả sử: a > b > c
* Nếu a, b, c đều không âm, giả thiết trên thành a > b > c ≥ 0
(*) <=> (a-b)(a² - ac - b² + bc) + c(c-a)(c-b) = 0
<=> (a-b)[(a+b)(a-b) -c(a-b)] + c(c-a)(c-b) = 0
<=> (a-b)².(a+b-c) + c(a-c)(b-c) = 0 (1*)
thấy b - c > 0 (do b > c) và a > 0 => a+b-c > 0 => (a-b)².(a+b-c) > 0 và c(a-c)(b-c) ≥ 0
=> (a-b)².(a+b-c) + c(a-c)(b-c) > 0 mâu thuẩn với (1*)
Vậy c < 0 (nói chung là trong a, b, c phải có số âm)
* Nếu cả a, b, c đều không có số dương do giả thiết trên ta có: 0 ≥ a > b > c
(*) <=> a(a-b)(a-c) + (b-c)(b² - ab - c² + ca) = 0
<=> a(a-b)(a-c) + (b-c)[(b+c)(b-c) - a(b-c)] = 0
<=> a(a-b)(a-c) + (b-c)².(b+c-a) = 0 (2*)
a - b > 0; a - c > 0 => a(a-b)(a-c) ≤ 0 (vì a ≤ 0)
và b < 0; c - a < 0 => b + c -a < 0 => (b-c)².(b+c-a) < 0
=> a(a-b)(a-c) + (b-c)².(b+c-a) < 0 mẫu thuẩn với (2*)
chứng tỏ trong a, b, c phải có số dương
Tóm lại trong 3 số a, b, c phải có số dương và số âm
1) a # b # c # a, thỏa a/(b-c) + b/(c-a) + c/(a-b) = 0
<=> a(c-a)(a-b) + b(a-b)(b-c) + c(b-c)(c-a) = 0
<=> -a(a-b)(a-c) - b(b-a)(b-c) - c(c-a)(c-b) = 0
<=> a(a-b)(a-c) + b(b-a)(b-c) + c(c-a)(c-b) = 0 (*)
từ (*) ta thấy a, b, c đối xứng nên không giãm tính tổng quát giả sử: a > b > c
* Nếu a, b, c đều không âm, giả thiết trên thành a > b > c ≥ 0
(*) <=> (a-b)(a² - ac - b² + bc) + c(c-a)(c-b) = 0
<=> (a-b)[(a+b)(a-b) -c(a-b)] + c(c-a)(c-b) = 0
<=> (a-b)².(a+b-c) + c(a-c)(b-c) = 0 (1*)
thấy b - c > 0 (do b > c) và a > 0 => a+b-c > 0 => (a-b)².(a+b-c) > 0 và c(a-c)(b-c) ≥ 0
=> (a-b)².(a+b-c) + c(a-c)(b-c) > 0 mâu thuẩn với (1*)
Vậy c < 0 (nói chung là trong a, b, c phải có số âm)
* Nếu cả a, b, c đều không có số dương do giả thiết trên ta có: 0 ≥ a > b > c
(*) <=> a(a-b)(a-c) + (b-c)(b² - ab - c² + ca) = 0
<=> a(a-b)(a-c) + (b-c)[(b+c)(b-c) - a(b-c)] = 0
<=> a(a-b)(a-c) + (b-c)².(b+c-a) = 0 (2*)
a - b > 0; a - c > 0 => a(a-b)(a-c) ≤ 0 (vì a ≤ 0)
và b < 0; c - a < 0 => b + c -a < 0 => (b-c)².(b+c-a) < 0
=> a(a-b)(a-c) + (b-c)².(b+c-a) < 0 mẫu thuẩn với (2*)
chứng tỏ trong a, b, c phải có số dương
Tóm lại trong 3 số a, b, c phải có số dương và số âm
Tk mk nha
a # b # c # a,thoan man a/(b-c)+b/(c-a)+c/(a-b)=0
<=> a(c-a)(a-b)+b(a-b)(b-c)+c(b-c)(c-a)=0
<=>-a(a-n)(a-c)-b(b-a)(b-c)+c(c-a)(c-b)(c-b)=0
<=>a(a-b)(a-c)+b(b-a)(b-c)+c(c-a)(c-b)=0 (*)
Tu (*)ta thay a,b,c doi xung nen ko giam tinh tong quat gia su :a>b>c
Nếu a,b,c đều ko âm ,giả thiết trên thành a>b>c>hoặc=0
(*)<=>(a-b)(a^2 - ac - b^2 +bc)+c(c-a)(c-b)=0
<=>(a-b)[(a+b)(a-b)- c(a-b)]+c(c -a)(c-b)=0
<=>(a-b)^2.(a+b-c)+c(a-c)(b-c)=0 (**)
Thấy b- c > 0 (do b > c)và a > 0 =>a+b-c > 0 =>(a-b)^2 . (a+b-c)>0 va c(a-c)(b-c)>hoac = 0
=>(a-b)^2.(a+b-c)+c(a-c)(b-c)>0 mâu thuẫn với (**)
Vay c < 0 (noi chung la trong a,b,c phai co so am )
Nếu cả a,b,c đều không có số dương do giả thiết trên ta có :0 > hoac = a > hoac = b>hoac = c
(*)<=>a(a-b)(a-c)+(b-c)(b^2-ab-c^2 + ca)=0
<=>a(a-b)(a-c)+(b-c)[(b+c)(b-c)-a(b-c)]=0
<=>a(a-b)(a-c)+(b-c)^2.(b+c-a)=0 (***)
a-b > 0 ;a- c > 0 => a(a-b)(a-c)< hoac = 0 (vi a < hoac = 0)
Và b<0 ; c -a < 0 => b+ c -a < 0=>(b-c)^2.(b+c-a)<0
=> a(a-b)(a-c)+(b-c)^2.(b+c-a)<0 mâu thuẫn với (***)
Chứng tỏ trong a,b,c phải có số dương
Tóm lại trong 3 số a,b,c phải có số dương và âm
k cho mình nha ! Chúc bạn học tốt
cho a,b,c ≥ 0 trong đó có ít nhất hai số dương. Chứng minh rằng căn bậc ba của a+b+c + căn bậc ba của b/c+a + căn bậc ba của c/a+b ≥2
CMR : Nếu tích ba số abc > 0 thì trong ba số a,b,c có ít nhất một số dương .
giả sử trong ba số a, b, c không số nào là số dương.
ta có: abc < 0 , mâu thuẫn
do đó trong ba số a, b, c có ít nhất một số dương