cộng trừ các phân thức
\(x+y+\frac{3x^2}{2y}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1, Thực hiện tính cộng, trừ, nhân, chia các phân thức sau:
a,\(\frac{2x-7}{10x-4}-\frac{3x+5}{4-10x}\)
b,\(\frac{2x+3}{4x^2y^2}:\frac{6x+9}{10x^2y}\)
c,\(\frac{x^2-y^2}{6x^2y^2}:\frac{x+y}{3xy}\)
d,\(\left(\frac{3x}{1-3x}+\frac{2x}{3x+1}\right):\frac{6x^2+10x}{1-6x+9x^2}\)
a) \(\frac{2x-7}{10x-4}-\frac{3x+5}{4-10x}\)
\(=\frac{2x-7}{10x-4}-\frac{-\left(3x+5\right)}{-\left(4-10x\right)}\)
\(=\frac{2x-7}{10x-4}-\frac{5-3x}{10x-4}\)
\(=\frac{2x-7-\left(5-3x\right)}{10x-4}\)
\(=\frac{2x-7-5+3x}{10x-4}\)
\(=\frac{5x-12}{10x-4}\)
cộng trừ các phân thức
\(\frac{2x^2-11x}{2xy}+\frac{5y-x}{y}+\frac{x+2y}{x}\)
\(\frac{2x^2-11x}{2xy}+\frac{5y-x}{y}+\frac{x+2y}{x}\)
\(=\frac{2x^2-11x+\left(5y-x\right)2x+\left(x+2y\right)2y}{2xy}\)
\(=\frac{2x^2-11x+10xy-2x^2+2xy+4y^2}{2xy}=\frac{12xy-11x+4y^2}{2xy}\)
cộng trừ các phân thức
\(\frac{x}{x-2y}+\frac{x}{x+2y}+\frac{8x^2}{4xy^2-x^3}\)
cộng trừ các phân thức
\(x+\frac{1-2x}{9}+\frac{3x-2}{12}\)
Ta có: MTC=36
Quy đồng
\(x=\frac{x.36}{36}\)
\(\frac{1-2x}{9}=\frac{\left(1-2x\right).4}{36}\)
\(\frac{3x-2}{12}=\frac{\left(3x-2\right).3}{36}\)
Ta có
:\(\frac{36x+4-8x+9x-6}{36}=\frac{37x-2}{36}\)
cộng trừ hai đơn thức động dạng
a) \(3x^2.y^3+x^2.y^3\)
b) \(5x^2y-\frac{1}{2}x^2y\)
c)\(\frac{3}{4}xyz^2+\frac{1}{2}xyz^2-\frac{1}{4}xyz^2\)
a) 3x2y3+x2y3=4x2y3
b)5x2y-1/2x2y=10/2x2y-1/2x2y=9/2x2y
c) \(\frac{3}{4}xyz^2+\frac{1}{2}xyz^2-\frac{1}{4}xyz^2\)
\(=\frac{3}{4}xyz^2+\frac{2}{4}xyz^2-\frac{1}{4}xyz^2\)
\(=\frac{5}{4}xyz^2-\frac{1}{4}xyz^2\)
\(=\frac{4}{4}xyz^2=xyz^2\)
\(a,3x^2y^3+x^2y^3=4x^2y^3\)
\(b,5x^2y-\frac{1}{2}x^2y=\frac{9}{2}x^2y\)
\(c,\frac{3}{4}xyz^2+\frac{1}{2}xyz^2-\frac{1}{4}xyz^2=\left(\frac{3}{4}xyz^2-\frac{1}{4}xyz^2\right)+\frac{1}{2}xyz^2=\frac{2}{4}xyz^2+\frac{1}{2}xyz^2=xyz^2\)
a,\(3x^2y^3+x^2y^3=\left(3+1\right)x^2y^3=4x^2y^3\)
b,\(5x^2y-\frac{1}{2}x^2y=\left(5-\frac{1}{2}\right)x^2y=\frac{9}{2}x^2y\)
c,\(\frac{3}{4}xyz^2+\frac{1}{2}xyz^2-\frac{1}{4}xyz^2=\left(\frac{3}{4}+\frac{1}{2}-\frac{1}{4}\right)xyz^2=xyz^2\)
công trừ phân thức
\(\frac{5x^2+y^2}{xy}-\frac{3x-2y}{xy}\)
\(\frac{5x^2+y^2}{xy}-\frac{3x-2y}{xy}\)
\(=\frac{5x^2+y^2-3x-2y}{xy}\)
Tham khảo nhé~
cộng trừ các phân thức
\(\frac{3}{4xy}+\frac{5x}{2y^2z}+\frac{7}{6yz^2}\)
\(\frac{3}{4xy}+\frac{5x}{2y^2z}+\frac{7}{6yz^2}\)
\(=\frac{9yz^2}{12xy^2z^2}+\frac{30x^2z}{12xy^2z^2}+\frac{14xy}{12xy^2z^2}\)
\(=\frac{9yz^2+30x^2z+14xy}{12xy^2z^2}\)
cộng trừ các phân thức
\(\frac{1}{x-y}+\frac{3xy}{y^3-x^3}+\frac{x-y}{x^2+xy+y^2}\)
thực hiện phép cộng các phân thức
a)\(\frac{5x-1}{3x^2y}+\frac{x+1}{3x^2y}\)
b)\(\frac{7}{12xy^2}+\frac{11}{18x^3y}\)
c)\(\frac{x}{x+2}+\frac{7x-16}{\left(x+2\right)\left(4x-7\right)}\)
an có 10000000 quả cam an cho mẹ gấp đôi rồi an co ba số quả lớn hơn mẹ 200 vậy an còn bao nhiêu quả cam
a) \(\frac{5x-1}{3x^2y}+\frac{x-1}{3x^2y}=\frac{5x-1+x-1}{3x^2y}=\frac{6x}{3x^2y}=\frac{2}{xy}\)
b) \(\frac{7}{12xy^2}+\frac{11}{18x^3y}=\frac{7\left(\frac{3}{2}x^2\right)}{18x^3y^2}+\frac{11y}{18x^3y^2}=\frac{10,5x^2+11y}{18x^3y^2}\)
c) \(\frac{x}{x+2}+\frac{7x-16}{\left(x+2\right)\left(4x-7\right)}=\frac{x\left(4x-7\right)}{\left(x+2\right)\left(4x-7\right)}+\frac{7x-16}{\left(x+2\right)\left(4x-7\right)}\)
\(=\frac{4x^2-7x+7x-16}{\left(x+2\right)\left(4x-7\right)}=\frac{4x^2-16}{\left(x+2\right)\left(4x-7\right)}\)
a) \(\frac{5x-1}{3x^2y}+\frac{x+1}{3x^2y}=\frac{5x-1+x+1}{3x^2y}=\frac{6x}{3x^2y}=\frac{2}{xy}\)
b) \(\frac{7}{12xy^2}+\frac{11}{18x^3y}=\frac{7x^2.18+11.12y}{12x^3y^2.18}=\frac{126x^2+132y}{216x^3y^2}=\frac{6\left(21x^2+22y\right)}{216x^3y^2}=\frac{21x^2+22y}{36x^3y^2}\)
c) \(\frac{x}{x+2}+\frac{7x-16}{\left(x+2\right)\left(4x-7\right)}=\frac{x\left(4x-7\right)+7x-16}{\left(x+2\right)\left(4x-7\right)}=\frac{4x^2-7x+7x-16}{\left(x+2\right)\left(4x-7\right)}\)
\(=\frac{4x^2-16}{\left(x+2\right)\left(4x-7\right)}=\frac{4\left(x^2-4\right)}{\left(x+2\right)\left(4x-7\right)}=\frac{4\left(x-2\right)\left(x+2\right)}{\left(x+2\right)\left(4x-7\right)}=\frac{4\left(x-2\right)}{4x-7}\)