Cho A=3^101 + 3^102 +3^103 + ..... + 3^200
CMR : A chia hết cho 120
Chứng minh: S=3^103+3^102-3^101 chia hết cho 33
CMR:
a, 101 x 102 x 103 x..x 200 chia hết cho 1 x 3 x 5 x...x 199.
b, 201 x 202 x 203 x...x 600 chia hết cho 3200
CMR a)3^10+3^11+3^12 chia hết cho 13
b) 5^100+5^101+5^102 chia hết cho 31
a) \(3^{10}+3^{11}+3^{12}\)
⇔ \(3^{10}\left(1+3+3^2\right)\)
⇔ \(3^{10}.13\)
⇒ \(3^{10}.13\) chia hết cho 13
a) \(3^{10}+3^{11}+3^{12}=3^{10}\left(1+3+3^2\right)=3^{10}\cdot13⋮13\)
b) \(5^{100}+5^{101}+5^{102}=5^{100}\left(1+5+5^2\right)=5^{100}\cdot31⋮31\)
cho B =101/102+102/103+103/101. so sanh B voi 3
\(B=\frac{101}{102}+\frac{102}{103}+\frac{103}{101}\)
\(B=1\)
B < 3
Giúp mình 5 câu này nhé . Ai làm đc cả 5 câu cho 10 điểm luôn ( Nếu đúng )
1/Cho A= 1/101+1/102+1/103+...+1/150
a) So sánh 1/150 với 1/101;...; 1/150 với 1/149 <----------------KO PHẢI LÀM
b) Chứng minh : A > 1/3
2/ Cho A= 1/101+1/102+1/103+...+1/200
a) So sánh: 1/101+1/102+...+1/150với 1/3 và 1/151+1/152+...+1/200 với 1/4
b) Chứng minh: A > 7/12
3/Cho A= 1/101+1/102+...+1/200
Chứng minh: 1/2 < A < 1
4/ Cho A = 1/101+1/102+1/103+...+1/150. Chứng minh: 1/3 < A < 1/2
5/ Chứng minh: 1/5+1/14+1/28 < 1/3
CHÚC CÁC BẠN THÀNH CÔNG
CÁC BẠN CHỈ CẦN GIÚP MÌNH ÍT NHẤT 2 CÂU THÔI
j mà nhìu zu zậy làm bao giờ mới xong
1) Tính giá trị biểu thức:
a) (-1+2-3+4-...-49+50) - (1 - 2 + 3 - 4 + ...+49 - 50)
b) (100 + 101 + 102 + 103 + ... + 119 + 120) - (100 + 101 + 102 + ... + 124 + 125)
2) Cho a và b là các số nguyên, hãy rút gọn các biểu thức:
a) (a - 3) - (a - 5)
b) (a + b - c) - (a - c)
c) (a + b) - (a - c - d + b)
a) (-1 + 2 - 3 + 4 -...- 49 + 50 ) - ( 1 - 2 + 3 - 4 +...+ 49 - 50)
= -1 + 2 - 3 + 4 -...- 49 + 50 - 1 + 2 -3 + 4 -... - 49 + 50)
=-1 -1
=-1 + (-1)
=-2
Mình nghĩ là đúng đó ,mình nên nhìn kĩ B1 và B2
b) Tự làm nhé
2)
a) (a - 3) - (a - 5)
=a - 3 - a + 5
=a - a - 3 + 5
= 0 - (3 - 5)
= -(3 - 5)
= - (-2) =2
b) ( a + b - c) - (a - c)
=a + b - c - a + c
= a - a + b - c +c
= 0 + b + c - c
= b + ( c - c)
= b + 0
= b
c) ( a + b ) - ( a - c -d + b)
= a + b - a + c +d -b )
= a - a + (b -b) - c + d
= 0 + 0 - c+d
= 0 - c + d
= - c+d
chứng minh rằng a=3+3 mũ 2+3 mũ 3+3 mũ 4+...+3 mũ 101+3 mũ 102 chia hết cho 13
cho A=1/101+1/102+1/103+...+1/199+1/200 cmr 5/8<a<3/4
\(A=\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{199}+\dfrac{1}{120}\left(a\right)\)
\(\Rightarrow A=\left(\dfrac{1}{101}+\dfrac{1}{102}+...\dfrac{1}{125}\right)+\left(\dfrac{1}{126}+\dfrac{1}{127}+...\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+\dfrac{1}{152}+...\dfrac{1}{175}\right)+\left(\dfrac{1}{176}+\dfrac{1}{177}+...\dfrac{1}{200}\right)\)
\(\Rightarrow A>25.\dfrac{1}{125}+25.\dfrac{1}{150}+25.\dfrac{1}{175}+25.\dfrac{1}{200}\)
\(\Rightarrow A>\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}\)
\(\Rightarrow A>\dfrac{168+140+120+105}{840}=\dfrac{533}{840}>\dfrac{5}{8}\left(\dfrac{533}{840}>\dfrac{525}{840}\right)\)
\(\Rightarrow A>\dfrac{5}{8}\left(1\right)\)
\(\left(a\right)\Rightarrow A=\left(\dfrac{1}{101}+...\dfrac{1}{120}\right)+\left(\dfrac{1}{121}+...\dfrac{1}{140}\right)+\left(\dfrac{1}{141}+...\dfrac{1}{160}\right)+\left(\dfrac{1}{161}+...\dfrac{1}{180}\right)+\left(\dfrac{1}{181}+...\dfrac{1}{200}\right)\)
\(\Rightarrow A< 20.\dfrac{1}{100}+20.\dfrac{1}{120}+20.\dfrac{1}{140}+20.\dfrac{1}{160}+20.\dfrac{1}{180}\)
\(\Rightarrow A< \dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}\)
\(\Rightarrow A< \dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{504+420+360+315+280}{2520}=\dfrac{1879}{2520}< \dfrac{3}{4}\left(\dfrac{1879}{2520}< \dfrac{1890}{2520}\right)\)
\(\Rightarrow A< \dfrac{3}{4}\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow\dfrac{5}{8}< A< \dfrac{3}{4}\left(dpcm\right)\)
(1-2+3-4+5-6+7-8+...+101-102+103) * x-120=2012
(1-2+3-4+5-6+7-8+...+101-102+103) * x-120=2012
[ -1 + ( -1 ) ... ( -1 ) + 103] * x -120 = 2012
( -1 x 51 + 103 ) * x - 120 = 2012
( -51 +103) * x = 2012 + 120
52 * x =2132
x= 2132 : 52
x= 41