Những câu hỏi liên quan
TV
Xem chi tiết
H24
8 tháng 3 2021 lúc 20:42

undefinedundefinedundefined

Bình luận (0)
NH
Xem chi tiết
NH
Xem chi tiết
AH
30 tháng 6 2019 lúc 14:10

Lời giải:

1.

Gọi số chính phương có tận cùng là $5$ là $a^2$. Khi đó $a$ cũng phải có tận cùng là $5$

Đặt \(a=\overline{A5}\)

\(\Leftrightarrow a^2=(\overline{A5})^2=(10A+5)^2=100A^2+100A+25\)

\(\Rightarrow a^2\) chia $100$ dư $25$ nên $a^2$ có tận cùng là $25$ hay chữ số hàng chục là $2$

--------------------

2.

Giả sử tồn tại số chính phương $a^2$ có tận cùng là $6$ và chữ số hàng chục là số chẵn.

Khi đó, $a^2$ có thể có tận cùng là $06,26,46,...,86$ $\rightarrow a^2$ không chia hết cho $4$ (1)

Mà $a^2$ có tận cùng bằng $6$ $\rightarrow a^2$ là scp chẵn, $\rightarrow a$ chẵn, $\rightarrow a.a=a^2$ chia hết cho $4$ (mâu thuẫn với (1))

Do đó không tồn tại số cp có tận cùng bằng $6$ mà chữ số hàng chục chẵn. Hay 1 số cp có tận cùng là 6 thì chữ số hàng chục là lẻ.

Bình luận (0)
AH
30 tháng 6 2019 lúc 14:19

3.

Giả sử tồn tại số chính phương $a^2$ có tận cùng là $4$ mà chữ số hàng chục lẻ.

Khi đó $a^2$ có thể có tận cùng $14,34,...,94$. Những số trên đều không chia hết cho $4$ nên $a^2$ không chia hết cho $4$ (1)

Mà $a^2$ tận cùng là $4$ nên $a^2$ là scp chẵn. Do đó $a$ chẵn hay $a\vdots 2$

$\rightarrow a^2=a.a\vdots 4$ (mâu thuẫn với (1))

Do đó không tồn tại scp có tận cùng bằng 4 mà chữ số hàng chục lẻ. Hay một số cp có tận cùng là 4 thì chữ số hàng hàng chục là số chẵn.

-----------------

4.

Gọi $a^2$ là scp có tận cùng $n$ chữ số $0$. Khi đó $a$ cũng phải có tận cùng bẳng $0$

Đặt \(a^2=(\overline{A0...0})^2\) ($n$ chữ số 0)

\(=(10^nA)^2=10^{2n}A^2=A^2.10...0\) ($n$ chữ số 0)

Hay $a^2$ có tận cùng là $2n$ chữ số $0$. $2n$ là số chẵn nên $a^2$ có lượng chẵn chữ số 0 tận cùng (đpcm)

Bình luận (0)
NA
Xem chi tiết
TP
Xem chi tiết
BA
Xem chi tiết
DD
Xem chi tiết
TN
Xem chi tiết
H24
9 tháng 2 2018 lúc 22:32

b)

đặt A= 1+2^1+2^2+.....+2^(n-1) (1) (điều kiện: n là hợp số) 
=>2A =2.[1+2^1+2^2+.....+2^(n-1)] 
=>2A=2^1+2^2+.....+2^(n-1) +2^n (2) 
lấy (2) - (1) vế theo vế ta có: 
2A-A= 2^n -1 
=> A= 2^n -1 
=> 2^n -1 = 1+2^1+2^2+.....+2^(n-1) 
vì n là hợp số =>n=a.b ( a,b thuộc N ; a >1; b>1) 
=> 1+2^1+2^2+.....+2^(n-1) =1+2^1+2^2+.....+2^(a.b-1) 
trong tổng 1+2^1+2^2+.....+2^(a.b-1) có (a.b-1-0) :1+1 =a.b số hạng 
=> tổng 1+2^1+2^2+.....+2^(a.b-1) có thể chia thành b nhóm ; hoặc a nhóm 
=>1+2^1+2^2+.....+2^(a.b-1) chia hết cho a và chia hết cho b mà a,b thuộc N ; a >1; b>1 
=>1+2^1+2^2+.....+2^(a.b-1) là hợp số => 2^n - 1 cũng là hợp số

Bình luận (0)
HA
Xem chi tiết
Xem chi tiết