tìm x
(2002 +2003+2004+2005+2006)*(1015-x*5)=0
Giải phương trình sau :
\(\frac{x^2-2008}{2007}+\:\frac{x^2-2007}{2006}+\frac{x^2-2006}{2005}=\:\frac{x^2-\:2005}{2004}+\:\frac{x^2-2004}{2003}+\:\frac{x^2-2003}{2002}\)
Ta có : \(\frac{x^2-2008}{2007}+\frac{x^2-2007}{2006}+\frac{x^2-2006}{2005}=\frac{x^2-2005}{2004}+\frac{x^2-2004}{2003}+\frac{x^2-2003}{2002}\)
=> \(\frac{x^2-2008}{2007}+1+\frac{x^2-2007}{2006}+1+\frac{x^2-2006}{2005}+1=\frac{x^2-2005}{2004}+1+\frac{x^2-2004}{2003}+1+\frac{x^2-2003}{2002}+1\)
=> \(\frac{x^2-2008}{2007}+\frac{2007}{2007}+\frac{x^2-2007}{2006}+\frac{2006}{2006}+\frac{x^2-2006}{2005}+\frac{2005}{2005}=\frac{x^2-2005}{2004}+\frac{2004}{2004}+\frac{x^2-2004}{2003}+\frac{2003}{2003}+\frac{x^2-2003}{2002}+\frac{2002}{2002}\)
=> \(\frac{x^2-1}{2007}+\frac{x^2-1}{2006}+\frac{x^2-1}{2005}=\frac{x^2-1}{2004}+\frac{x^2-1}{2003}+\frac{x^2-1}{2002}\)
=> \(\frac{x^2-1}{2007}+\frac{x^2-1}{2006}+\frac{x^2-1}{2005}-\frac{x^2-1}{2004}-\frac{x^2-1}{2003}-\frac{x^2-1}{2002}=0\)
=> \(\left(x^2-1\right)\left(\frac{1}{2007}+\frac{1}{2006}+\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}-\frac{1}{2002}\right)=0\)
=> \(x^2-1=0\)
=> \(x^2=1\)
=> \(x=\pm1\)
Vậy phương trình có 2 nghiệm là x = 1, x = -1 .
Tìm x biết ; x+2002/16+x+2003/15+x+2004/14+x+2005/13=x+2006/12 =-5
Giải:
Ta có:
\(\dfrac{x+2002}{16}+\dfrac{x+2003}{15}+\dfrac{x+2004}{14}+\dfrac{x+2005}{13}+\dfrac{x+2006}{12}=-5\)
\(\Leftrightarrow\dfrac{x+2002}{16}+\dfrac{x+2003}{15}+\dfrac{x+2004}{14}+\dfrac{x+2005}{13}+\dfrac{x+2006}{12}+5=0\)
\(\Leftrightarrow\dfrac{x+2002}{16}+1+\dfrac{x+2003}{15}+1+\dfrac{x+2004}{14}+1+\dfrac{x+2005}{13}+1+\dfrac{x+2006}{12}+1=0\)
\(\Leftrightarrow\dfrac{x+2002+16}{16}+\dfrac{x+2003+15}{15}+\dfrac{x+2004+14}{14}+\dfrac{x+2005+13}{13}+\dfrac{x+2006+12}{12}=0\)
\(\Leftrightarrow\dfrac{x+2018}{16}+\dfrac{x+2018}{15}+\dfrac{x+2018}{14}+\dfrac{x+2018}{13}+\dfrac{x+2018}{12}=0\)
\(\Leftrightarrow\left(x+2018\right)\left(\dfrac{1}{16}+\dfrac{1}{15}+\dfrac{1}{14}+\dfrac{1}{13}+\dfrac{1}{12}\right)=0\)
Vì \(\dfrac{1}{16}+\dfrac{1}{15}+\dfrac{1}{14}+\dfrac{1}{13}+\dfrac{1}{12}\ne0\)
\(\Leftrightarrow x+2018=0\)
\(\Leftrightarrow x=-2018\)
Vậy ...
Cho x = 2005. Tính giá trị của biểu thức:
\(x^{2005}-2006.x^{2004}+2006.x^{2003}-2006.x^{2002}+...-2006.x^2+2006x-1\)
Ta có :
\(x=2005\Rightarrow x+1=2006\)
Thay \(2006=x+1\) vào biểu thức trên ta được :
\(x^{2005}-\left(x+1\right)x^{2004}+\left(x+1\right)x^{2003}-\left(x+1\right)x^{2002}+...-\left(x+1\right)x^2+\left(x+1\right)x-1\)
\(=x^{2005}-x^{2005}+x^{2004}-x^{2004}+x^{2003}-...-x^3+x^2-x^2+x-1\)
\(=x-1\) mà \(x=2005\)
\(\Rightarrow x^{2005}-2006.x^{2004}+2006.x^{2003}-2006.x^{2002}+...-2006.x^2+2006x-1=2005-1=2004\)
Cho A =2002/2001+2003/2002+2004/2003+2005/2004+2006/2005+2007/2006+2008/20007+2009/20008.So sánh A với 8
Cho A=2002/2001+2003/2002+2004/2003+2005/2004+2006/2005+2007/2006+2008/2007+2009/2008
Hãy so sánh A với 8 và giải thích tại sao
2002/2001>:,2003/2002>1.....
CÓ 8 PHÂN SỐ MỖI PHÂN SỐ CÓ GIÁ TRỊ LỚN HƠN 1 VÂY TỔNG CỦA 8 PHÂN SỐ LỚN HƠN 1 SẼ LỚN HƠN 8.
Tìm tổng của S=1+2-3-4+5+6-7-8+9+.....+2002-2003-2004+2005+2006
Dể thôi
Tìm khoảng cách 2-1=1
số số hạng:(2006-1):1+1=2006
Tổng là:(2006+1)*2006:2=2013021
vậy S là 2013021
Khoảng cách các số là:
2-1=1
Có tất cả số số hạng là:
(2006-1):1+1=2006(số hạng)
S =:
(2006+1).2006:2=2013021
\(\frac{x+6}{2001}+\frac{x+5}{2002}+\frac{x+4}{2003}=\frac{x+3}{2004}+\frac{x+2}{2005}\)+\(\frac{x+1}{2006}\)
Tìm x
Trình bày bài giải bài toán sau
Cho A=2002/2001+2003/2002+ 2004/2003+2005/2004+2006/2005+2007/2006+2008/2007+2009/2008
Hãy so sánh A với 8
\(A=\frac{2002}{2001}+\frac{2003}{2002}+\frac{2004}{2003}+\frac{2005}{2004}+\frac{2006}{2005}+\frac{2007}{2006}+\frac{2008}{2007}+\frac{2009}{2008}>\frac{2001}{2001}+\frac{2002}{2002}+\frac{2003}{2003}+\frac{2004}{2004}+\frac{2005}{2005}+\frac{2006}{2006}+\frac{2007}{2007}+\frac{2008}{2008}\)
\(A=\frac{2002}{2001}+\frac{2003}{2002}+\frac{2004}{2003}+\frac{2005}{2004}+\frac{2006}{2005}+\frac{2007}{2006}+\frac{2008}{2007}+\frac{2009}{2008}>1+1+1+1+1+1+1+1\)\(A=\frac{2002}{2001}+\frac{2003}{2002}+\frac{2004}{2003}+\frac{2005}{2004}+\frac{2006}{2005}+\frac{2007}{2006}+\frac{2008}{2007}+\frac{2009}{2008}>8\)
\(A>8\)
TÌM X BIẾT ; X+2002/16+x+2003/15+x+2004/14+x+2005/13+x=2006/12