tìm a,b biết 9a^2b^2 - 5a - 5b là số chính phương
và a^2019 = 2020b^2018
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm các cặp số nguyên dương(a;b) thỏa mãn 9a^2b^2-5a+5b là số chính phương và a^2019=2020b^2018
Tìm các cặp số nguyên dương(a;b) thỏa mãn 9a^2b^2-5a+5b là số chính phương và a^2019=2020b^2018
Tìm 3 số a,b,c biết: (3a-2b)/5=(2c-5a)/3=(5b-3c)/2 và a+b+c=-50
Ta có : (3a-2b)/5 = (2c-5a)/3 <=> (15a-10b)/25 = (6c -15a)/9 = (15a-10b+6c-15a)/(25+9) = (3c-5b)/17 Do đó: (3c-5b)/17 = (5b-3c_
)/2 = 0. Nên 3a - 2b = 0 => b = 1,5a; 2c - 5a = 0 => c = 2,5a. Lúc đó : a+b+c= 5a = -50 => a = -10; b = -15, c= -25.
tìm 3 số a; b;c biết: (3a-2b)/5=(2c-5a)/3=(5b-3c)/2 và a+b+c=-50
43x42=???
tìm 3 số a,b,c biết : 3a-2b/5=2c-5a/3=5b-3c/2 và a+b+c=-50
\(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)
=>\(\frac{5\left(3a-2b\right)}{25}=\frac{3\left(2c-5a\right)}{9}=\frac{2\left(5b-3c\right)}{4}\)
=> \(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6c}{4}\)
Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6c}{4}=\frac{15a-10b+6c-15a+10b-6c}{25+9+4}=\frac{0}{38}=0\)
=> \(\frac{3a-2b}{5}=0\Rightarrow3a-2b=0\Rightarrow3a=2b\Rightarrow\frac{a}{2}=\frac{b}{3}\left(1\right)\)
\(\frac{2c-5a}{3}=0\Rightarrow2c-5a=0\Rightarrow2c=5a\Rightarrow\frac{a}{2}=\frac{c}{5}\left(2\right)\)
Từ (1) và (2) => \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)
Theo tính chất của dãy tỉ số bằng nhau ta lại có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{-50}{10}=-5\)
=> a=-10,b=-15,c=-25
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{5b-3c}{2}=\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5\left(3a-2b\right)+3\left(2c-5a\right)}{5.5+3.3}\)
=\(\frac{-10b+6c}{34}=\frac{-5b+3c}{17}\)
Do đó, \(\frac{5b-3c}{2}=\frac{-5b+3c}{17}\)
Suy ra 5b-3c=0\(\Rightarrow b=\frac{3}{5}c\)và a=\(\frac{2}{5}c\)
Lại có a+b+c=-50 nên \(\frac{2}{5}\)\(c+\frac{3}{5}c+c=-50\Rightarrow c=-25\)
Vậy b=\(\frac{3}{5}c\Rightarrow b=\frac{3}{5}.-25\Rightarrow b=-15\)
a=\(\frac{2}{5}c\Rightarrow a=\frac{2}{5}.-25\Rightarrow\)a=-10
Vậy a=-10
b=-15
c=-25
5b−3c 2 = 3a−2b 5 = 2c−5a 3 = 5(3a−2b)+3(2c−5a) 5.5+3.3 = −10b+6c 34 = −5b+3c 17 Do đó, 5b−3c 2 = −5b+3c 17 Suy ra 5b-3c=0 ⇒b= 3 5 cvà a= 2 5 c Lại có a+b+c=-50 nên 2 5 c+ 3 5 c+c=−50⇒c=−25 Vậy b= 3 5 c⇒b= 3 5 .−25⇒b=−15 a= 2 5 c⇒a= 2 5 .−25⇒a=-10 Vậy a=-10 b=-15 c=-25
Chứng minh: A=2018^2+2018^2×2019^2+2019^2 là số chính phương.
\(a^2+a^2(a+1)^2+(a+1)^2 \\=a^4+2a^3+3a^2+2a+1 \\=(a^2+a+1)^2 \)
Thay a = 2018 ta được A chính phương.
a.1/3 x 2019/2020
b. 2017 x 2018/2019 x 2019/2018
Cho hai số nguyên dương \(a;b\) thỏa mãn điều kiện \(2a+5b\) và \(2b+5a\) đều là số chính phương . Chứng minh rằng cả hai số \(a;b\) cùng chia hết cho 7.
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán giúp đỡ em với ạ!
Em cám ơn nhiều lắm ạ!
Bài toán này dựa trên bài toán mà bạn đã đăng hôm trước: nếu \(m^2+n^2\) chia hết cho 7 thì cả m và n đều chia hết cho 7.
Đặt \(\left\{{}\begin{matrix}5a+2b=m^2\\2a+5b=n^2\end{matrix}\right.\)
\(\Rightarrow7\left(a+b\right)=m^2+n^2\)
\(\Rightarrow m^2+n^2⋮7\)
\(\Rightarrow m;n\) đều chia hết cho 7
\(\Rightarrow m^2;n^2\) đều chia hết cho 49
\(\Rightarrow\left\{{}\begin{matrix}5a+2b⋮49\\2a+5b⋮49\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}3\left(a-b\right)⋮49\\7\left(a+b\right)⋮49\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a-b⋮7\\a+b⋮7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2a⋮7\\2b⋮7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a⋮7\\b⋮7\end{matrix}\right.\) (đpcm)
Có bao nhiêu giá trị của m trên [-2018; 2018] để phương trình
x2 + (2 - m)x + 4 = 4\(\sqrt{x^3+4x}\) có nghiệm ?
A. 2020
B. 2021
C. 2018
D. 2019
\(x=0\) không là nghiệm của phương trình
Chia hai vế phương trình cho x, phương trình trở thành:
\(\left(x+\dfrac{4}{x}\right)+2-m=4\sqrt{x+\dfrac{4}{x}}\left(1\right)\)
Đặt \(x+\dfrac{4}{x}=t\left(t\ge2\right)\)
\(\left(1\right)\Leftrightarrow m=f\left(t\right)=t^2-4t+2\left(2\right)\)
Phương trình đã cho có nghiệm khi phương trình \(\left(2\right)\) có nghiệm \(t\ge2\)
\(\Leftrightarrow m\ge f\left(2\right)=-2\)
\(\Rightarrow\) có 2021 giá trị thỏa mãn yêu cầu bài toán