tính: \(x=\sqrt{1+999^2+\dfrac{999^2}{1000^2}}+\dfrac{999}{1000}\)
Tính
P= \(\sqrt{1+999^2+\dfrac{999^2}{1000^2}}\)+\(\dfrac{999}{1000}\)
\(P=\sqrt{1+999^2+\dfrac{999^2}{1000^2}+\dfrac{999}{1000}}\)
\(\Leftrightarrow\)\(\sqrt{\dfrac{1999}{1000}+999^2+\dfrac{999^2}{1000^2}}\)
Tính A biết \(A=\dfrac{1000}{1}+\dfrac{999}{2}+\dfrac{998}{3}+...+\dfrac{2}{999}+\dfrac{1}{1000}\)
Yêu cầu bài toán chỉ đơn thuần tính cái này thôi à em!
Tính: \(\left(\dfrac{1000}{1}+\dfrac{999}{2}+\dfrac{998}{3}+...+\dfrac{2}{999}+\dfrac{1}{1000}\right):\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1001}\right)\)
Tính: \(\left(\dfrac{1000}{1}+\dfrac{999}{2}+\dfrac{998}{3}+...+\dfrac{2}{999}+\dfrac{1}{1000}\right):\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1001}\right)\)
Tính A biết \(A=\dfrac{1000}{1}+\dfrac{999}{2}+\dfrac{998}{3}+...+\dfrac{2}{999}+\dfrac{1}{1000}\)
Tính nhanh : \(\dfrac{1}{1}.\dfrac{1}{2}+\dfrac{1}{2}.\dfrac{1}{3}+\dfrac{1}{3}.\dfrac{1}{4}+...+\dfrac{1}{998}.\dfrac{1}{999}+\dfrac{1}{999}.\dfrac{1}{1000}\)
\(\dfrac{1}{1}.\dfrac{1}{2}+\dfrac{1}{2}.\dfrac{1}{3}+\dfrac{1}{3}.\dfrac{1}{4}+...+\dfrac{1}{999}.\dfrac{1}{1000}\\ =\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{999.1000}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{999}-\dfrac{1}{1000}\\ =1-\dfrac{1}{1000}=\dfrac{999}{1000}\)
ta có
1/1.1/2=1-1/2
1/2.1/3=1/2-1/3
1/3.1/4=1/3-1/4
............
1/999.1/1000=1/999-1/1000
Từ đó suy ra
1/1.1/2+1/2-1/3+1/3+.......+1/998.1/999+1/999.1/1000
=1/1-1/2+1/2-1/3+1/3-.....+1/998-1/999+1/999-1/1000
=1-1/1000
=1000/1000-1/1000
=999/1000
nhớ like bạn nhé
999 x 2........1000
A.999 x 2 > 1000
B.999 x 2 < 1000
C.999 x 2 = 1000
(Không báo cáo câu hỏi này nữa!)
Giải thích tại sao: 999 x 2 > 1000 ?
999 x 2=bao nhiêu ?
A đúng nhé bạn
Tính : A=\(\sqrt{1+999^2+\frac{999^2}{1000^2}}+\frac{999}{1000}\)
Tính M=\(\sqrt{1+999^2+\frac{999^2}{1000^2}}\)+\(\frac{999}{1000}\)