Những câu hỏi liên quan
H24
Xem chi tiết
H24
Xem chi tiết
ST
10 tháng 8 2018 lúc 15:51

Giả sử trong 100 số nguyên dương đã cho không tồn tại 2 số nào bằng nhau

Không mất tính tổng quát, giả sử \(a_1< a_2< a_3< ...< a_{100}\)

\(\Rightarrow a_1\ge1;a_2\ge2;a_3\ge3;....;a_{100}\ge100\Rightarrow\frac{1}{a_1^2}+\frac{1}{a_2^2}+\frac{1}{a^2_3}...+\frac{1}{a^2_{100}}\le\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\left(1\right)\)

Lại có: \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=\frac{199}{100}\left(2\right)\)

Từ (1) và (2) => \(\frac{1}{a_1^2}+\frac{1}{a^2_2}+...+\frac{1}{a^2_{100}}< \frac{199}{100}\) trái với giả thiết

Vậy tồn tại ít nhất 2 số bằng nhau trong 100 số a1,a2,...,a100

Bình luận (0)
NT
Xem chi tiết
TM
25 tháng 1 2022 lúc 7:05

\(A_1+A_2+A_3+...+A_{100}=2.2019\). Mà 2.2019 chia hết cho 2

\(\Rightarrow A_1+A_2+A_3+...+A_{100}⋮2\)

\(\Rightarrow A_1.2+A_2.2+A_3.2+...+A_{100}.2\)

\(=2.\left(A_1+A_2+A_3+...+A_{100}\right)⋮2\)

Bình luận (0)
LL
25 tháng 1 2022 lúc 7:07

=> 2(A1+A2+A3+....+A100)
Mà 2 chia hết cho 2
=> 2(A1+A2+A3+....+A100) chia hết cho 2
=> A1.2+A2.2+A3.2+.…..+A100.2 chia hết cho 2(đpcm)

Bình luận (0)
N2
25 tháng 1 2022 lúc 9:35

Ta luôn luôn có :

n²-n=n.n-n=n×(n-1)

Nxét:n và n-1 là 2 số tự nhiên liên tiếp⇒n×(n-1)⋮ 2  (1)

\(\Rightarrow S=a\dfrac{2}{1}+a\dfrac{2}{2}+a\dfrac{2}{3}+...+a-\left(a_1+a_2+a_3+...+a_{100}\right)\\ \Rightarrow S=a\dfrac{2}{1}+a\dfrac{2}{2}+a\dfrac{2}{3}+...+a\dfrac{2}{100}-\left(a_1-a_2-a_3-...-a_{100}\right)\\ \Rightarrow S=\left(a\dfrac{2}{1}-a_1\right)+\left(a\dfrac{2}{2}-a_2\right)+\left(a\dfrac{2}{3}-a_3\right)+...\left(a\dfrac{2}{100}-a_{100}\right)⋮2\)

\(\Rightarrow a\dfrac{2}{1}+a\dfrac{2}{2}+a\dfrac{2}{3}+...+a\dfrac{2}{100}⋮2\)

Bình luận (0)
DB
Xem chi tiết
NN
Xem chi tiết

Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :

\(\frac{a_1-1}{100}=\frac{a_2-2}{99}=...=\frac{a_{100}-100}{1}=\frac{a_1+a_2+...+a_{100}-5050}{5050}=\frac{10100-5050}{5050}=\frac{5050}{5050}=1\)

\(\Rightarrow a_1-1=100\)

\(a_2-2=99\)

...

\(a_{100}-100=1\)

\(\Rightarrow a_1=a_2=...=a_{100}=101\)

Bình luận (0)
 Khách vãng lai đã xóa
NV
Xem chi tiết
PQ
7 tháng 4 2018 lúc 13:59

Giả sử trong 100 số đó không có số nào bằng nhau a1 > a2>a3>.....a100

Mà a1,a2,a3,...,a100 thuộc Z

\(\Rightarrow\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}\le1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}< 1+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}=\frac{101}{2}\)(vôlý)

Vậy có ít nhất 2 số bằng nhau trong dãy số trên

Bình luận (0)
NT
27 tháng 12 2018 lúc 14:53

còn cách nào khác k bạn

Bình luận (0)
PT
Xem chi tiết
H24
Xem chi tiết
HS
22 tháng 6 2019 lúc 10:43

Câu hỏi của Ngọc Ánh - Toán lớp 10 | Học trực tuyến

Bạn tham khảo link tại đây nhé

Bình luận (0)
NC
4 tháng 10 2019 lúc 22:18

Em tham khảo link này nhé! Câu hỏi của Ngọc - Toán lớp 7 - Học toán với OnlineMath

Bình luận (0)
H24
Xem chi tiết
LL
8 tháng 1 2019 lúc 20:58

Giả sử 100 số đó đôi một khác nhau

Không mất tính tổng quát giả sử \(0< a_1< a_2< a_3< ...< a_{100}\)

Vậy \(a_1\ge1;a_2\ge2;....;a_{100}\ge100\)suy ra \(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{100}}\le1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\)

\(\Rightarrow\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{100}}< 1+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}\)(99 phân số \(\frac{1}{2}\)

\(\Rightarrow\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{100}}< \frac{1}{2}.\left(2+99\right)=\frac{1}{2}.101=\frac{101}{2}\)trái với giả thiết.

Vì vậy điều giả sử sai, ta có điều phải chứng minh

Bình luận (0)
H24
9 tháng 1 2019 lúc 7:43

cảm ơn bạn

Bình luận (0)
VC
22 tháng 3 2020 lúc 11:06

cảm ơn bạn

Bình luận (0)
 Khách vãng lai đã xóa