Những câu hỏi liên quan
HN
Xem chi tiết
HT
Xem chi tiết
NT
22 tháng 7 2023 lúc 13:11

Tham khảo:

loading...

loading...

Bình luận (0)
H24
Xem chi tiết
MC
Xem chi tiết
ND
25 tháng 7 2018 lúc 19:03

A B C D O H

Hạ CH vuông góc với OB tại H. Theo quan hệ đường xiên hình chiếu: 

\(CH\le OC\Leftrightarrow CH.OB\le OC.OB\Leftrightarrow2.S_{BOC}\le OC.OB\)(Do \(S_{BOC}=\frac{CH.OB}{2}\))

Áp dụng BĐT Cauchy, ta có: \(OC.OB\le\frac{OC^2+OB^2}{2}\)

\(\Rightarrow2.S_{BOC}\le\frac{OC^2+OB^2}{2}\left(1\right)\). Chứng minh tương tự ta được:

\(2.S_{AOB}\le\frac{OA^2+OB^2}{2}\left(2\right);2.S_{DOC}\le\frac{OD^2+OC^2}{2}\left(3\right);2.S_{AOD}\le\frac{OA^2+OD^2}{2}\left(4\right)\)

Cộng (1); (2); (3) và (4) theo vế: 

\(2.\left(S_{BOC}+S_{AOB}+S_{DOC}+S_{AOD}\right)\le\frac{2.\left(OA^2+OB^2+OC^2+OD^2\right)}{2}\)

\(\Rightarrow2S\le OA^2+OB^2+OC^2+OD^2\)=> ĐPCM.

Bình luận (0)
ND
25 tháng 7 2018 lúc 19:16

 \(2.S_{BOC}\le OC.OB\). Dấu "=" xảy ra <=> OC vuông góc với OB

 \(OC.OB\le\frac{OC^2+OB^2}{2}\). Dấu "=" xảy ra <=> OC=OB

Suy ra \(2.S_{BOC}\le\frac{OC^2+OB^2}{2}\). Dấu "=" xảy ra <=> \(\Delta\)BOC vuông cân tại O

Tương tự với các tam giác AOB; AOD; DOC.

Vậy dấu "=" xảy ra <=> Tứ giác ABCD là hình vuông và O là tâm của hình vuông này.

Bình luận (0)
HT
Xem chi tiết
NH
19 tháng 7 2023 lúc 18:43

loading...

 a,  Xét \(\Delta\) AOB có: AO+OB > AB (trong tam giác tổng hai cạnh luôn lớn hơn cạnh còn lại)

Tương tự ta có:  OC + OD > DC

                           OA + OD > AD

                           OB + OC > BC 

Cộng vế với vế ta có:

OA+OB+OC+OD+OA+OD+OB+OC > AB +DC+AD+BC

(OA+OC)\(\times\)2 + (OB + OD)\(\times\)2 >  PABCD

AC \(\times\) 2 + BD \(\times\) 2 > PABCD

AC + BD > \(\dfrac{P_{ABCD}}{2}\) (đpcm)

b, Xét \(\Delta\) ABD có: AB + AD > BD (trong tam giác tổng hai cạnh bao giờ cũng lớn hơn cạnh còn lại)

Tương tự ta có:   AD + DC > AC 

                            DC + CB > DB 

                            CB + AB > AC 

  Cộng vế với vế ta có: 

AB+AD+AD+DC+DC+CB+CB+AB >BD+ AC+DB+AC

2AB+2BC+2CD+2AD> 2AC + 2BD 

2(AB + BC + CD + AD) > 2(AC + BD)

    AB + BC + CD + AD > AC + BD

       PABCD > AC + BD (đpcm)

 

 

 

 

 

 

 

                           

                 

Bình luận (0)
H24
Xem chi tiết
NT
29 tháng 10 2021 lúc 23:01

a: Xét ΔABD có

M là trung điểm của AB

Q là trung điểm của AD

Do đó: MQ là đường trung bình của ΔABD

Suy ra: MQ//BD và \(MQ=\dfrac{BD}{2}\)(1)

Xét ΔBCD có

N là trung điểm của BC

P là trung điểm của CD

Do đó: NP là đường trung bình của ΔBCD

Suy ra: NP//BD và \(NP=\dfrac{BD}{2}\left(2\right)\)

Từ (1) và (2) suy ra MQ//NP và MQ=NP

hay MQPN là hình bình hành

Bình luận (1)
VC
29 tháng 10 2021 lúc 23:29

b) ✱Xét Δ ABD có :
 AM = BM  ( gt )
AQ = DQ ( gt ) 
⇒ QM là đg trung bình của Δ ABD 
⇒ MQ = 1/2 BD
✱Xét Δ BDC có :
BN = CN ( gt )
DP = PC ( gt )
⇒ NP là đg trung bình Δ BDC 
⇒ NP = 1/2 BD
Ta có :
 Chu vi tg MNPQ là:
MN + NP + PQ + QM ⇔ 1/2 AC + 1/2 BD + 1/2 AC + 1/2 BD 
⇔ MN + NP + PQ + QM = AC + BD
Mà AC và BD là đg chéo của tg ABCD 
⇒ Chu vi tg MNPQ = tổng 2 đg chéo tg ABCD 
Đó , m ghi vô ii ko mai thầy chửi sấp mặt đấy !

Bình luận (4)
PB
Xem chi tiết
CT
17 tháng 6 2018 lúc 2:30

Chứng minh EFGH là hình bình hành. Để EFGH là hình chữ nhật thì

Þ H E F ^ = 90 0 ⇒ H E ⊥   E F  

Þ AC ^BD.

Bình luận (0)
Xem chi tiết
NT
3 tháng 7 2021 lúc 10:51

a) Xét ΔABC có 

M là trung điểm của AB(gt)

N là trung điểm của BC(gt)

Do đó: MN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)

Xét ΔADC có 

Q là trung điểm của AD(gt)

P là trung điểm của CD(gt)

Do đó: QP là đường trung bình của ΔADC(Định nghĩa đường trung bình của tam giác)

Suy ra: QP//AC và \(QP=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(2)

Từ (1) và (2) suy ra MN//PQ và MN=PQ

Xét tứ giác MNPQ có 

MN//PQ(cmt)

MN=PQ(cmt)

Do đó: MNPQ là hình bình hành(Dấu hiệu nhận biết hình bình hành)

b)

Xét ΔABD có 

M là trung điểm của AB(gt)

Q là trung điểm của AD(gt)

Do đó: MQ là đường trung bình của ΔADB(Định nghĩa đường trung bình của tam giác)

Suy ra: \(MQ=\dfrac{BD}{2}\)(Định lí 2 về đường trung bình của tam giác)

Hình bình hành MNPQ trở thành hình vuông khi \(\left\{{}\begin{matrix}\widehat{MQP}=90^0\\MQ=QP\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}AB\perp CD\\AB=CD\end{matrix}\right.\)

Hình bình hành MNPQ trở thành hình vuông khi 

Bình luận (0)
TH
Xem chi tiết
NT
19 tháng 10 2021 lúc 22:02

a: Xét ΔABD có 

E là trung điểm của AB

H là trung điểm của AD

Do đó: EH là đường trung bình của ΔABD

Suy ra: EH//BD và \(EH=\dfrac{BD}{2}\left(1\right)\)

Xét ΔBCD có 

F là trung điểm của BC

G là trung điểm của DC

Do đó: FG là đường trung bình của ΔBCD

Suy ra: FG//BD và \(FG=\dfrac{BD}{2}\left(2\right)\)

Từ (1) và (2) suy ra EH//GF và EH=GF

hay EHGF là hình bình hành

Bình luận (0)