chia đa thức 1 biến đã sắp xếp:
(x4-3x3+3x-1):(x2-1)
Câu 3. Cho 2 đa thức: M(x) = 3x3 + x2 + 4x4 – x – 3x3 + 5x4 + x2 – 6
N(x) = – x2 – x4 + 4x3 – x2 – 5x3 + 3x + 1 + x
a) Thu gọn và sắp xếp các đa thức trên theo luỹ thừa giảm dần của biến, tìm bậc, hệ số cao nhất, hệ số tự do của đa thức M(x).
b) Tính P(x) = M(x) + N(x) ; Q(x) = M(x) – N(x)
c) Tính Q(x) tại x = –2.
d) Chứng minh đa thức H(x) = M(x) – 8x2 + x + 8 không có nghiệm.
a: \(M\left(x\right)=9x^4+2x^2-x-6\)
\(N\left(x\right)=-x^4-x^3-2x^2+4x+1\)
b: \(P\left(x\right)=8x^4-x^3+3x-5\)
\(Q\left(x\right)=10x^4+x^3+4x^2-5x-7\)
Câu 3. Cho 2 đa thức: M(x) = 3x3 + x2 + 4x4 – x – 3x3 + 5x4 + x2 – 6
N(x) = – x2 – x4 + 4x3 – x2 – 5x3 + 3x + 1 + x
a) Thu gọn và sắp xếp các đa thức trên theo luỹ thừa giảm dần của biến, tìm bậc, hệ
số cao nhất, hệ số tự do của đa thức M(x).
b) Tính P(x) = M(x) + N(x) ; Q(x) = M(x) – N(x)
c) Tính Q(x) tại x = –2.
d) Chứng minh đa thức H(x) = M(x) – 8x2 + x + 8 không có nghiệm
a: \(M\left(x\right)=9x^4+2x^2-x-6\)
\(N\left(x\right)=-x^4-x^3-2x^2+4x+1\)
b: \(P\left(x\right)=8x^4-x^3+3x-5\)
\(Q\left(x\right)=10x^4+x^3+4x^2-5x-7\)
Cho hai đa thức:
P(x) = 3x2 – 5 + x4 – 3x3 – x6 – 2x2 – x3
Q(x) = x3 + 2x5 – x4 + x2 – 2x3 + x –1.
Sắp xếp các hạng tử của mỗi đa thức theo lũy thừa tăng của biến.
P(x) = 3x2 – 5 + x4 – 3x3 – x6 – 2x2 – x3
= – x6 + x4 + (– 3x3 – x3) + (3x2 – 2x2) – 5
= – x6 + x4 – 4x3 + x2 – 5.
= – 5+ x2 – 4x3 + x4 – x6
Và Q(x) = x3 + 2x5 – x4 + x2 – 2x3 + x –1
= 2x5 – x4 + (x3 – 2x3) + x2 + x –1
= 2x5 – x4 – x3 + x2 + x –1.
= –1+ x + x2 – x3 – x4 + 2x5
cho hai đa thức :A=x5 -3x3+x2-x3-3+2x;B=x4-3x-2+5x2-3x4+2x5 a)sắp xếp đa thức A và B theo luỹ thừa của biến b) tính A+B, A-
a. \(A=x^5-3x^3+x^2-x^3-3+2x=x^5-4x^3+x^2+2x-3\)
\(B=x^4-3x-2+5x^2-3x^4+2x^5=2x^5-2x^4+5x^2-3x-2\)
b. \(A+B=x^5-4x^3+x^2+2x-3+2x^5-2x^4+5x^2-3x-2\)
\(=3x^5-2x^4-4x^3+6x^2-x-5\)
Bài 1: Cho hai đa thức:
P(x) = x2 + 5x4 – 3x3 + x2 - 5x4 + 3x3 – x + 5
Q(x) = x - 5x3– x2 + 5x3 - x2 + 3x – 1
a) Thu gọn rồi sắp xếp các đa thức trên theo luỹ thừa giảm dần của biến
Cho các đa thức :
A(x) = x2 + 5x4 - 3x3 + x2 - 4x4 + 3x3 - x + 5
B(x) = x - 5x3 - x2 - x4 + 5x3 - x2 + 3x - 1
a, Thu gọn và sắp xếp các đa thức trên theo lũy thừa giảm dần của biến
b, Tính M(x) = A(x) + B(x) và N(x) = A(x) - B(x)
c, Tìm nghiệm của đa thức M(x)
NHỜ CÁC CAO NHÂN GIÚP ĐỠ !!?
Giúp tớ đi các cậu ơi, mai phải nộp rồi
A(x) = x2 + 5x4 - 3x3 + x2 - 4x4 + 3x3 - x + 5
= ( 5x4 - 4x4 ) + ( 3x3 - 3x3 ) + ( x2 + x2 ) - x + 5
= x4 + 2x2 - x + 5
B(x) = x - 5x3 - x2 - x4 + 5x3 - x2 - 3x + 1
= -x4 + ( 5x3 - 5x3 ) + ( -x2 - x2 ) + ( -3x + x ) + 1
= -x4 - 2x2 - 2x + 1
M(x) = A(x) + B(x)
= x4 + 2x2 - x + 5 + ( -x4 - 2x2 - 2x + 1 )
= x4 + 2x2 - x + 5 - x4 - 2x2 - 2x + 1
= -3x + 6
N(x) = A(x) - B(x)
= x4 + 2x2 - x + 5 - ( -x4 - 2x2 - 2x + 1 )
= x4 + 2x2 - x + 5 + x4 + 2x2 + 2x - 1
= 2x4 + 4x2 + x + 4
M(x) = 0 <=> -3x + 6 = 0
<=> -3x = -6
<=> x = 2
Vậy nghiệm của M(x) là 2
a, Ta có :
\(A\left(x\right)=x^2+5x^4-3x^3+x^2-4x^4+3x^3-x+5\)
\(=x^4+2x^2-x+5\)
\(B\left(x\right)=x-5x^3-x^2-x^4+5x^3-x^2+3x-1\)
\(=-x^4-2x^2-2x+1\)
b, Ta có : \(M\left(x\right)=A\left(x\right)+B\left(x\right)=\left(x^4+2x^2-x+5\right)+\left(-x^4-2x^2-2x+1\right)\)
\(=-3x+6\)
Tương tự vs N(x)
c, Đặt \(-3x+6=0\Leftrightarrow-3x=-6\Leftrightarrow x=2\)
Cho 2 đa thức: P(x)= 2x4 + 3x3 + 3 - 3x2 + 3x + 4x2 - x4 - x
Q(x)= x4 - 2x + 4 + x3 + 3x2 + 4x - 2 - x2
a, Thu gọn và sắp xếp các hạng tử của mỗi đa thức trên theo lũy thừa giảm dần của biến
b, Tính P(x) + Q(x) , P(x) - Q(x)
a) \(...=P\left(x\right)=2x^4-x^4+3x^3+4x^2-3x^2+3x-x+3\)
\(P\left(x\right)=x^4+3x^3+x^2+2x+3\)
\(...=Q\left(x\right)=x^4+x^3+3x^2-x^2+4x+4-2\)
\(Q\left(x\right)=x^4+x^3+2x^2+4x+2\)
b) \(P\left(x\right)+Q\left(x\right)=\left(x^4+3x^3+x^2+2x+3\right)+\left(x^4+x^3+2x^2+4x+2\right)\)
\(\Rightarrow P\left(x\right)+Q\left(x\right)=2x^4+4x^3+3x^2+6x+5\)
\(P\left(x\right)-Q\left(x\right)=\left(x^4+3x^3+x^2+2x+3\right)-\left(x^4+x^3+2x^2+4x+2\right)\)
\(\)\(\Rightarrow P\left(x\right)-Q\left(x\right)=x^4+3x^3+x^2+2x+3-x^4-x^3-2x^2-4x-2\)
\(\Rightarrow P\left(x\right)-Q\left(x\right)=2x^3-x^2-2x+1\)
Bài 3 (1,75 điểm): Cho hai đa thức: A(x) = 3x6+ 3x3 - 3x3 - 3x6 - x3 + x4 + 2023 B(x) = x3 + x2 -1 a. Thu gọn và sắp xếp đa thức A(x) theo luỹ thừa giảm của biến. b. Tính A(x) + B(x) c. Biết H(x) – A(x) = B(x). Chứng minh đa thức H(x) không có nghiệm Bài 4 (3điểm): Cho ABC vuông tại A. Tia phân giác của góc ABC cắt AC ở D.Kẻ DH BC a. Chứng minh ABD = HBD b. Gọi I là giao điểm của 2 tia BA và HD. Chứng minh IDC cân. c. Chứng minh: AD +AI > 1 2 IC
ét o ét cíu vs mn
Thu gọn các đa thức sau rồi sắp xếp các hạng tử của chúng theo lũy thừa giảm dần của biến, tìm bậc, hệ số cao nhất, hệ số tự do:
P(x)=33 + x2 + 4x4 - x- 3x3 + 5x4 + x2 - 6
Q(x)=2x3 - x4 - \(\dfrac{1}{2}\)x2 - 3 + \(\dfrac{3}{4}\)x- \(\dfrac{1}{3}\)x2 + x4 - \(\dfrac{7}{4}\)x
Sửa đề: \(P=3x^3+x^2+4x^4-x-3x^3+5x^4+x^2-6\)
Ta có: \(P=3x^3+x^2+4x^4-x-3x^3+5x^4+x^2-6\)
\(=9x^4+2x^2-x-6\)
Ta có: \(Q\left(x\right)=2x^3-x^4-\dfrac{1}{2}x^2-3+\dfrac{3}{4}x-\dfrac{1}{3}x^2+x^4-\dfrac{7}{4}x\)
\(=2x^3-\dfrac{5}{6}x^2-x-3\)
Sắp xếp các đa thức sau theo lũy thừa giảm của biến rồi thực hiện phép chia: 12 x 2 - 14 x + 3 - 6 x 3 + x 4 : 1 - 4 x + x 2