tìm chữ số a, b để
a) \(\overline{8a7b}\) chia hết cho cả 5 và 9
Bài 3:tim chu so a,b để:
a)8a7b chia het cho 5 va 9
b)7a68b khi chia cho 5 cung nhu 9 du 2
c)5a8b chia het cho 9 va a-b=1
d)6a25b chia het cho 5 va 11
Bài 4: Tìm số có 5 chữ số
3x67yz chia hết cho cả 25 và 9
Bài 3:
a)b=0;5 vì tận cùng là 0 hoặc 5 thì \(⋮\)5
*Nếu b=5 thì 8a7b=8a75
Tổng các chữ số của nó là:8+a+7+5=20+a
Để 8a75\(⋮\)9 thì 20+a cũng phải\(⋮\)9
\(\Rightarrow\)a=7
*Nếu b=0 thì 8a7b=8a70
Tổng các chữ số của nó là:
8+a+7+0=15+a
Để 8a70\(⋮\)9 thì 15+a cũng phải \(⋮\)9
\(\Rightarrow\)a=3
Vậy a=3;7 và b=0;5
(Dấu\(⋮\)mk viết tắt thui đó, khi trình bày vào vở thì phải viết rõ ra nha)
Bài 4:
Ta có:
3x67yz \(⋮\)25 và 9
Để 3x67yz \(⋮\)25 thì yz phải\(⋮\)25
\(\Rightarrow\)yz = 00;25;50;75
*Nếu yz=00 thì 3x67yz=3x6700
Để 3x6700\(⋮\)9 thì 3+x+6+7+0+0\(⋮\)9=16+x\(⋮\)9
\(\Rightarrow\)x=2
*Nếu yz=25 thì 3x67yz=3x6725
Để 3x6725\(⋮\)9 thì 3+x+6+7+2+5\(⋮\)9=23+x\(⋮\)9
\(\Rightarrow\)x=4
*Nếu yz=50 thì 3x67yz=3x6750
Để 3x6750\(⋮\)9 thì 3+x+6+7+5+0\(⋮\)9=21+x\(⋮\)9
\(\Rightarrow\)x=6
*Nếu yz=75 thì 3x67yz=3x6775
Để 3x6775\(⋮\)9 thì 3+x+6+7+7+5\(⋮\)9=28+x\(⋮\)9
\(\Rightarrow\)x=8
Vậy x=2;8;6;4
y=0;2;5;7
z=0;5
Cho số tự nhiên A = \(\overline{3x4y}\) tìm các chữ số x, y để A chia hết cho cả 2; 5 và 9
Vì A chia hết cho 2 và 5 nên A chia hết cho 10
=>y=0
Vì A chia hết cho 9
=>3+x+4+0 chia hết cho 9 hay 7+x chia hết cho 9
=>x=2
Vậy số cần tìm là 3240
\(\kappa\Theta\beta\iota\varepsilon\tau\)
Tìm các chữ số tự nhiên a, b sao cho
a) \(\overline{163a}\) ⋮ 3 và 5 b)\(\overline{712a4b}\) chia hết cho cả 2,3,5,và 9
a) Để \(\overline{163a}\) chia hết cho 5 thì \(a\in\left\{0;5\right\}\)
Mà số đó lại chia hết cho 3 nên: \(1+6+3+a=10+a\) ⋮ 3
Với a = 0 thì 10 + 0 = 10 không chia hết cho 3 (loại)
Với a = 5 thì 10 + 5 = 15 ⋮ 3 (nhận)
Vậy a = 5
b) Để \(\overline{712a4b}\) chia hết cho 2 và 5 thì \(b=0\)
Số đó có dạng \(\overline{712a40}\)
Mà số đó lại chia hết cho 3 và 9 nên: \(7+1+2+a+4+0=14+a\) ⋮ 9
\(14+a=18\Rightarrow a=4\)
Vậy (a;b) = (4;0)
a) Tìm chữ số a để số 56 a ¯ là số chia hết cho 3;
b) Tìm các chữ số a và b để số 3 a b ¯ là số chia hết cho cả 2; 5 và 9;
c) Tìm các chữ số a và b để số 2 a 5 b ¯ là số chia hết cho cả 5 và 9.
a) Tìm chữ số a để số 14 a ¯ là số chia hết cho 3;
b) Tìm các chữ số a và b để số 9 a 6 b ¯ là số chia hết cho cả 2; 5 và 9;
c) Tìm các chữ số a và b để số 2 a 1 b ¯ là số chia hết cho cả 5 và 9 nhưng không chia hết cho 2.
Tìm các chữ số x, y biết:
a) \(\overline {12x02y} \) chia hết cho cả 2; 3 và 5.
b) \(\overline {413x2y} \) chia hết cho 5 và 9 mà không chia hết cho 2.
a) \(\overline {12x02y} \) chia hết cho 2 và 5 khi chữ số tận cùng của nó là 0.
=> y = 0
\(\overline {12x020} \) chia hết cho 3 khi tổng các chữ số của nó cũng chia hết cho 3.
Nên (1 + 2 + x + 0 + 2 + 0)\( \vdots \)3
=> (x + 5) \( \vdots \) 3 và \(0 \le x \le 9\)
=> x\( \in \) {1; 4; 7}
Vậy để \(\overline {12x02y} \) chia hết cho 2, 3 và cả 5 thì y = 0 và x \( \in \){1; 4; 7}.
b) \(\overline {413x2y} \) chia hết cho 5 mà không chia hết cho 2 khi chữ số tận cùng của nó là 5
=> y = 5
\(\overline {413x25} \)chia hết cho 9 khi tổng các chữ số của nó cũng chia hết cho 9
Nên (4 + 1 + 3 + x + 2 + 5) \( \vdots \)9
=> (x + 15) \( \vdots \)9 và \(0 \le x \le 9\)
=> x = 3.
Vậy \(\overline {413x2y} \) chia hết cho 5 và 9 mà không chia hết cho 2 thì x = 3 và y = 5.
Cho số tự nhiên B = \(\overline{57a2b}\), tìm các chữ số a, b sao cho số B chia hết cho cả 2; 3; 5 nhưng không chia hết cho 9
Ta có: \(B⋮2\) và \(B⋮5\)
=>\(B⋮10\)
=>b=0
Ta lại có: \(B⋮3\) => 5+7+a+2+b \(⋮\)3
hay 14+a\(⋮\)3
=> a=1 hoặc a=4 hoặc a=7
Vậy có 3 số thỏa mãn 57120 ; 57420 ; 57720
Tìm các chữ số a, b để:
a) A= 56a3b chia hết cho 2 và 9
b) B= 71a2b chia hết cho 5 và 9
c) C= 6a13b chia hết cho 2; 3; 5; 9.
Tìm các chữ số a, b để:
a) A= 56a3b chia hết cho 2 và 9
b) B= 71a2b chia hết cho 5 và 9
c) C= 6a13b chia hết cho 2; 3; 5; 9.