Những câu hỏi liên quan
DH
Xem chi tiết
LD
28 tháng 2 2016 lúc 20:11

do m ;m+k ; m+2k là số nguyên tố >3

=> m;m+k;m+2k lẻ

=> 2m+k chẵn =>k⋮⋮ 2

mặt khác m là số nguyên tố >3 

=> m có dạng 3p+1 và 3p+2(p∈∈ N*)

xét m=3p+1

ta lại có k có dạng 3a ;3a+1;3a+2(a∈∈ N*)

với k=3a+1 ta có 3p+1+2(3a+1)=3(p+1+3a) loại vì m+2k là hợp số 

với k=3a+2 => m+k= 3(p+a+1) loại

=> k=3a

tương tự với 3p+2

=> k=3a

=> k⋮⋮3

mà (3;2)=1

=> k⋮⋮6

Bình luận (0)
BY
Xem chi tiết
BY
22 tháng 6 2017 lúc 9:48

moi nguoi giai nhanh giup minh nhe

Bình luận (0)
NT
Xem chi tiết
DD
Xem chi tiết
VN
10 tháng 2 2016 lúc 18:33

 a^4 - 1 = (a²-1)(a²+1) 

* bình phương của 1 số nguyên chia 3 dư 1 hoặc 0 
do a nguyên tố > 5 nên a ko chia hết cho 3 => a² chia 3 dư 1 => a²-1 chia hết cho 3 
=> a^4 - 1 chia hết cho 3 

* bình phương của số nguyên chia 5 dư 0, 1 hoặc 4 
a nguyên tố > 5 => a² chia 5 dư 1 hoặc 4 
nếu a² chia 5 dư 1 => a²-1 chia hết cho 5 
nếu a² chia 5 dư 4 => a²+1 chia hết cho 5 
=> a^4 - 1 chia hết cho 5 
* a nguyên tố > 5 => a lẻ ; đặt a = 2m+1 
a^4 - 1 = (a-1)(a+1)(a²+1) = (2m)(2m+2)(4m²+4m+2) 
a^4 - 1 = 8(m)(m+1)(2m²+2m+1) 
m(m+1) là tích 2 số nguyên liên tiếp nên chia hết cho 2 => a^4 -1 chia hết cho 16 

từ 3 điều trên và chú ý BCNN[3,5,16] = 240 => a^4 - 1 chia hết cho 240 

ta có khai triển: 
b^n - 1 = (b-1).[b^(n-1) + b^(n-2) + ...+ 1] = (b-1).p 

ad với b = a^4 ; (a^4)^k - 1 = (a^4 -1).p 
mà a^4 -1 chia hết cho 240 nên a^4k - 1 = (a^4 -1)p chia hết cho 240 

         Lần sau ghi dấu nhé pn !

Bình luận (0)
VN
10 tháng 2 2016 lúc 18:33

 a^4 - 1 = (a²-1)(a²+1) 

* bình phương của 1 số nguyên chia 3 dư 1 hoặc 0 
do a nguyên tố > 5 nên a ko chia hết cho 3 => a² chia 3 dư 1 => a²-1 chia hết cho 3 
=> a^4 - 1 chia hết cho 3 

* bình phương của số nguyên chia 5 dư 0, 1 hoặc 4 
a nguyên tố > 5 => a² chia 5 dư 1 hoặc 4 
nếu a² chia 5 dư 1 => a²-1 chia hết cho 5 
nếu a² chia 5 dư 4 => a²+1 chia hết cho 5 
=> a^4 - 1 chia hết cho 5 
* a nguyên tố > 5 => a lẻ ; đặt a = 2m+1 
a^4 - 1 = (a-1)(a+1)(a²+1) = (2m)(2m+2)(4m²+4m+2) 
a^4 - 1 = 8(m)(m+1)(2m²+2m+1) 
m(m+1) là tích 2 số nguyên liên tiếp nên chia hết cho 2 => a^4 -1 chia hết cho 16 

từ 3 điều trên và chú ý BCNN[3,5,16] = 240 => a^4 - 1 chia hết cho 240 

ta có khai triển: 
b^n - 1 = (b-1).[b^(n-1) + b^(n-2) + ...+ 1] = (b-1).p 

ad với b = a^4 ; (a^4)^k - 1 = (a^4 -1).p 
mà a^4 -1 chia hết cho 240 nên a^4k - 1 = (a^4 -1)p chia hết cho 240 .

             Lần sau ghi dấu nhé pn !

Bình luận (0)
H24
10 tháng 2 2016 lúc 18:37

 a^4 - 1 = (a²-1)(a²+1) 


* bình phương của 1 số nguyên chia 3 dư 1 hoặc 0 
do a nguyên tố > 5 nên a ko chia hết cho 3 => a² chia 3 dư 1 => a²-1 chia hết cho 3 
=> a^4 - 1 chia hết cho 3 

* bình phương của số nguyên chia 5 dư 0, 1 hoặc 4 
a nguyên tố > 5 => a² chia 5 dư 1 hoặc 4 
nếu a² chia 5 dư 1 => a²-1 chia hết cho 5 
nếu a² chia 5 dư 4 => a²+1 chia hết cho 5 
=> a^4 - 1 chia hết cho 5 
* a nguyên tố > 5 => a lẻ ; đặt a = 2m+1 
a^4 - 1 = (a-1)(a+1)(a²+1) = (2m)(2m+2)(4m²+4m+2) 
a^4 - 1 = 8(m)(m+1)(2m²+2m+1) 
m(m+1) là tích 2 số nguyên liên tiếp nên chia hết cho 2 => a^4 -1 chia hết cho 16 

từ 3 điều trên và chú ý BCNN[3,5,16] = 240 => a^4 - 1 chia hết cho 240 

ta có khai triển: 
b^n - 1 = (b-1).[b^(n-1) + b^(n-2) + ...+ 1] = (b-1).p 

ad với b = a^4 ; (a^4)^k - 1 = (a^4 -1).p 
mà a^4 -1 chia hết cho 240 nên a^4k - 1 = (a^4 -1)p chia hết cho 240 

         Lần sau ghi dấu nhé pn !

Bình luận (0)
DD
Xem chi tiết
NT
10 tháng 2 2016 lúc 19:19

 a^4 - 1 = (a²-1)(a²+1) 

* bình phương của 1 số nguyên chia 3 dư 1 hoặc 0 
do a nguyên tố > 5 nên a ko chia hết cho 3 => a² chia 3 dư 1 => a²-1 chia hết cho 3 
=> a^4 - 1 chia hết cho 3 

* bình phương của số nguyên chia 5 dư 0, 1 hoặc 4 
a nguyên tố > 5 => a² chia 5 dư 1 hoặc 4 
nếu a² chia 5 dư 1 => a²-1 chia hết cho 5 
nếu a² chia 5 dư 4 => a²+1 chia hết cho 5 
=> a^4 - 1 chia hết cho 5 
* a nguyên tố > 5 => a lẻ ; đặt a = 2m+1 
a^4 - 1 = (a-1)(a+1)(a²+1) = (2m)(2m+2)(4m²+4m+2) 
a^4 - 1 = 8(m)(m+1)(2m²+2m+1) 
m(m+1) là tích 2 số nguyên liên tiếp nên chia hết cho 2 => a^4 -1 chia hết cho 16 

từ 3 điều trên và chú ý BCNN[3,5,16] = 240 => a^4 - 1 chia hết cho 240 

ta có khai triển: 
b^n - 1 = (b-1).[b^(n-1) + b^(n-2) + ...+ 1] = (b-1).p 

ad với b = a^4 ; (a^4)^k - 1 = (a^4 -1).p 
mà a^4 -1 chia hết cho 240 nên a^4k - 1 = (a^4 -1)p chia hết cho 240 

Bình luận (0)
VN
Xem chi tiết
NP
25 tháng 12 2014 lúc 9:58

Số nguyên tố lớn hơn 3 sẽ có dạng 3k+1 hay 3k+2  (k thuộc N)

Nếu p=3k+1 thì p+2=3k+1+2=3k+3=3.(k+1) là số nguyên tố. Vì 3.(k+1) chia hết cho 3 nên dạng p=3k+1 không thể có.

Vậy p có dạng 3k+2 (thật vậy, p+2=3k+2+2=3k+4 là 1 số nguyên tố).

=>p+1=3k+2+1=3k+3=3.(k+1) chia hết cho 3.

Mặt khác, p là 1 số nguyên tố lớn hơn 3 cũng như lớn hơn 2 nên p là 1 số nguyên tố lẻ => p+1 là 1 số chẵn => p+1 chia hết cho 2.

Vì p chia hết cho cả 2 và 3 mà ƯCLN(2,3)=1 nên p+1 chia hết cho 6.

 

Bình luận (0)
PT
6 tháng 4 2016 lúc 11:33

phuong ne 3(k+1)sao la so nguyen to duoc

Bình luận (0)
DD
1 tháng 1 2024 lúc 15:31

p là số nguyên tố lớn hơn 3

=>p không chia hết cho 3

=>p=3k+1;3k+2

xét p=3k+1=>p+2=3k+3=3(k+1) chia hết cho 3

=>p+2 là hợp số(Vô lí)

=>p=3k+2

=>p+1=3k+3=3(k+1)

p là số nguyên tố lớn hơn 3

=>p là số lẻ

=>p+1 là số chẵn

=>p+1 chia hết cho 2

Vì (3;2)=1=>p+1 chia hết cho 6

=>đpcm

Bình luận (0)
TX
Xem chi tiết
H24
Xem chi tiết

đơn giản

Bình luận (0)
 Khách vãng lai đã xóa
H24
25 tháng 12 2019 lúc 20:47

cau nay tui cung can

ai do giup tui di!

huhuhu

Bình luận (0)
 Khách vãng lai đã xóa
H24
25 tháng 12 2019 lúc 20:51

bao don gian thi giup di

Bình luận (0)
 Khách vãng lai đã xóa
KT
Xem chi tiết