rút gọn
\(B=\frac{1+2+2^2+2^3+...+2^{2019}}{1+2^5+2^{10}+2^{15}+...+2^{2015}}\)
Rút gọn:
A=\(\dfrac{1+2+2^2+2^3+...+2^{2019}}{1+2^5+2^{10}+2^{15}+...+2^{2015}}\)
\(C=1+2^5+2^{10}+2^{15}+...+2^{2015}\)
\(\Leftrightarrow32C=2^5+2^{10}+...+2^{2020}\)
=>\(31C=2^{2020}-1\)
hay \(C=\dfrac{2^{2020}-1}{31}\)
\(B=1+2+2^2+...+2^{2019}\)
=>\(2B=2+2^2+...+2^{2020}\)
=>\(B=2^{2020}-1\)
\(A=\dfrac{B}{C}=\dfrac{2^{2020}-1}{\dfrac{2^{2020}-1}{31}}=31\)
Bài 1: Tìm điều kiện xác đinh của các biểu thức sau
a, A=\(\frac{x-1}{\sqrt{x-1}}+\sqrt{2x+5}\)
b, B=\(\frac{\sqrt{-x}}{x^2-3}-2019\)
Bài 2: Rút gọn
a, A=\(\frac{15-9\sqrt{2}}{5\sqrt{5}-3\sqrt{10}}-\sqrt{\frac{16}{5}}-\frac{1}{\sqrt{10}+\sqrt{5}}\)
b, B=\(\frac{\sqrt{145\sqrt{154}}-\sqrt{9-\sqrt{77}}}{1-\frac{1}{\sqrt{2}}}\)
Rút gọn biểu thức:
M = \(\frac{3^9-2^3.3^7+2^{10}.3^2-2^{13}}{3^{10}-2^2.3^7+2^{10}.3^3-2^{12}}\)
N = \(\frac{1^{2015}+2^{2015}+3^{2015}+....+10^{2015}}{2^{2015}+4^{2015}+6^{2015}+....+20^{2015}}\)
giúp vs
1)a) n thuộc N*: rút gọn:
K = \(\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}\)
b) tính
I = \(\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{1+\frac{1}{2015^2}+\frac{1}{2016^2}}+\sqrt{1+\frac{1}{2016^2}+\frac{1}{2017^2}}\)2) A= \(\sqrt{x^2-6x+9}-\sqrt{x^2+6x+9}\)
a) rút gọn A
b) tìm x đề A=1
3) rút gọn B = \(\sqrt{x+\sqrt{2x-1}}-\sqrt{x-\sqrt{2x-1}}\)
4) tính: \(\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}-\sqrt{3-2\sqrt{2}}\)
C= \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
Rút gọn B = \(\frac{1^2}{2^2-1}.\frac{3^2}{4^2-1}.\frac{5^2}{6^2-1}...\frac{2019^2}{2020^2-1}\)
(Lưu ý :a2-b2= (a+b).(b-a))
\(B=\frac{1^2}{2^2-1}.\frac{3^2}{4^2-1}...\frac{2019^2}{2020^2-1}\)
\(=\frac{1^2}{\left(2-1\right)\left(2+1\right)}.\frac{3^2}{\left(4-1\right)\left(4+1\right)}...\frac{2019^2}{\left(2020-1\right)\left(2020+1\right)}\)
\(=\frac{1^2}{1.3}.\frac{3^2}{3.5}...\frac{2019^2}{2019.2021}=\frac{1}{2021}\)
1, tìm x biết : |2x+3|=5
2.Rút gọn : B= (1-1/2).(1-1/3).(1-1/4)...(1-1/28)
3. Rút gọn : A= 1+1/2+1/2^2+1/2^3+...+1/2^2015
dễ mà bạn, cái này thì phải tự làm thôi!
1:
I2x+3I = 5
=> 2x+3 = 5 hoặc 2x+3 = -5
=> 2x = 5 - 3 hoặc 2x = -5 - 3
=> 2x = 2 hoặc 2x = -8
=> x = 2 hoặc x = -4
2:
B = 1/2.2/3.3/4.4/5.....27/28
= 1.2.3.4.5.6...27/2.3.4.5.6...28
= 1/28
3:
2A = 2(1+1/2+1/2^2+1/2^3+1/2^4+...+1/2^2015) = 2+1+1/2+1/2^2+1/2^3+...+1/2^2014
=> 2A-A = ( 2+1+1/2+1/2^2+1/2^3+...+1/2^2014)-(1+1/2+1/2^2+1/2^3+...+1/2^2015)
=> A = 2-1/2^2015
Rút gọn biểu thức:
a) \(A=\frac{2\left(\sqrt{5}+1\right)}{\sqrt{5}-1}-\frac{10+2\sqrt{5}}{\sqrt{5}+1}-1\)
b)\(B=\sqrt{\left(1-\sqrt{2014}\right)2}.\sqrt{2015+2\sqrt{2014}}\)
\(A=\frac{\left(2\text{}\text{}\text{}\text{}\text{}\text{}\text{}\text{}\sqrt{5}+2\right)\left(\sqrt{5}+1\right)-\left(10+2\sqrt{5}\right)\left(\sqrt{5}-1\right)}{5-1}-1\)
\(=\frac{10+2\sqrt{5}+2\sqrt{5}+2-10\sqrt{5}+10-10+2\sqrt{5}}{4}-1\)
\(=\frac{12-4\sqrt{5}}{4}-1\)
\(=\frac{4\left(3-\sqrt{5}\right)}{4}-1\)
\(=3-\sqrt{5}-1\)
\(=2-\sqrt{5}\)
(còn biểu thức B hình như sai đề, bạn coi lại đề)
đề câu B nè : \(B=\sqrt{\left(1-\sqrt{2014}\right)^2}.\sqrt{2015+2\sqrt{2014}}\)
\(B=\sqrt{\left(1-\sqrt{2014}\right)^2}\sqrt{2015+2\sqrt{2014}}\)
\(=|1-\sqrt{2014}|.\sqrt{2014+2\sqrt{2014}+1}\) ( thừa số phía sau mình p/tích thành hằng đẳng thức)
\(=\left(\sqrt{2014}-1\right).\sqrt{|\sqrt{2014}+1|}\)(vì 1- căn của 2014 <0)
\(=\left(\sqrt{2014}-1\right).\left(\sqrt{2014}+1\right)\)
\(=2014+\sqrt{2014}-\sqrt{2014}-1\)
= 2013
Rút gọn:
\(\frac{\frac{1}{2020}+\frac{2}{2019}+\frac{3}{2018}+...+\frac{2019}{2}+\frac{2020}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2021}}\)
Đặt \(A=\frac{\frac{1}{2020}+\frac{2}{2019}+\frac{3}{2018}+...+\frac{2019}{2}+\frac{2020}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2021}}\)
\(A=\frac{1+\left(\frac{1}{2020}+1\right)+\left(\frac{2}{2019}+1\right)+\left(\frac{3}{2018}+1\right)+...+\left(\frac{2019}{2}+1\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2021}}\)
\(A=\frac{\frac{2021}{2021}+\frac{2021}{2020}+\frac{2021}{2019}+...+\frac{2021}{2}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2021}}\)
\(A=\frac{2021\left(\frac{1}{2021}+\frac{1}{2020}+\frac{1}{2019}+...+\frac{1}{2}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2021}}=2021\)