Tìm gtln ( hoặc gtnn ):
a) \(A=2x^2-8x-10\)
b) \(B=x-x^2\)
Tìm GTNN hoặc GTLN của:
a) A=|2x-1|-4 (GTLN)
b) B = 1,5-|2-x| (GTLN)
c) C = |x-3|(GTNN)
d)D = 10-4|x-2|(GTLN)
a) Sửa đề: Tìm GTNN
A = |2x - 1| - 4
Ta có:
|2x - 1| ≥ 0 với mọi x ∈ R
⇒ |2x - 1| - 4 ≥ -4 với mọi x ∈ R
Vậy GTNN của A là -4 khi x = 1/2
b) B = 1,5 - |2 - x|
Ta có:
|2 - x| ≥ 0 với mọi x ∈ R
⇒ -|2 - x| ≤ 0 với mọi x ∈ R
⇒ 1,5 - |2 - x| ≤ 1,5 với mọi x ∈ R
Vậy GTLN của B là 1,5 khi x = 2
c) C = |x - 3| ≥ 0 với mọi x ∈ R
Vậy GTNM của C là 0 khi x = 3
d) D = 10 - 4|x - 2|
Ta có:
|x - 2| ≥ 0 với mọi x ∈ R
⇒ 4|x - 2| ≥ 0 với mọi x ∈ R
⇒ -4|x - 2| ≤ 0 với mọi x ∈ R
⇒ 10 - 4|x - 2| ≤ 10 với mọi x ∈ R
Vậy GTLN của D là 10 khi x = 2
b1. Phân tích đthức -> nhân tử.
a) x^3 - 3x^2 - 4x +13
b) x^4 - 5x^2 +4
c) (x+y+z)^3 -x^3 - y^3 - z^3
d) 45+ x^3 -5x^2 - 9x
e) x^4 - 2x^3 - 3x^3 - 2x -3
b2. tìm GTLN hoặc GLNN
a) A = 2x^2 - 8x - 10 -> GTNN
b) B = 9x - 3x^2 -> GTLN
2. a. \(A=2x^2-8x-10=2\left(x^2-4x+4\right)-18\)
\(=2\left(x-2\right)^2-18\)
Vì \(\left(x-2\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-2\right)^2-18\ge-18\)
Dấu "=" xảy ra \(\Leftrightarrow2\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy minA = - 18 <=> x = 2
b. \(B=9x-3x^2=-3\left(x^2-3x+\frac{9}{4}\right)+\frac{27}{4}\)
\(=-3\left(x-\frac{3}{2}\right)^2+\frac{27}{4}\)
Vì \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)\(\Rightarrow-3\left(x-\frac{3}{2}\right)^2+\frac{27}{4}\le\frac{27}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow-3\left(x-\frac{3}{2}\right)^2=0\Leftrightarrow x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)
Vậy maxB = 27/4 <=> x = 3/2
Sửa đề:x3-3x2-4x+12
a,x3-3x2-4x+12
=(x3-3x2)-(4x+12)
=x2(x-3)-4(x-3)
=(x2-4)(x-3)
b,x4- 5x2 +4
x4-4x2-x2+4
(x4-x2)-(4x2+4)
x2(x2-1)-4(x2-1)
(x2-4)(x2-1)
Bài 1.
a) x3 - 3x2 - 4x + 12 ( mạn phép sửa 13 thành 12, chứ để 13 là không phân tích được :> )
= x2( x - 3 ) - 4( x - 3 )
= ( x - 3 )( x2 - 4 )
= ( x - 3 )( x - 2 )( x + 2 )
b) x4 - 5x2 + 4
Đặt t = x2
Đa thức <=> t2 - 5t + 4
= t2 - t - 4t + 4
= t( t - 1 ) - 4( t - 1 )
= ( t - 1 )( t - 4 )
= ( x2 - 1 )( x2 - 4 )
= ( x - 1 )( x + 1 )( x - 2 )( x + 2 )
c) ( x + y + z )3 - x3 - y3 - z3
= ( x + y + z )3 - ( x3 + y3 + z3 )
= ( x + y + z )3 - [ ( x + y + z )3 - 3( x + y )( y + z )( z + x ) ] ( chỗ này bạn xem HĐT tổng ba lập phương nhé )
= ( x + y + z )3 - ( x + y + z )3 + 3( x + y )( y + z )( z + x )
= 3( x + y )( y + z )( z + x )
d) 45 + x3 - 5x2 - 9x
= ( x3 - 5x2 ) - ( 9x - 45 )
= x2( x - 5 ) - 9( x - 5 )
= ( x - 5 )( x2 - 9 )
= ( x - 5 )( x - 3 )( x + 3 )
e) x4 - 2x3 + 3x2 - 2x - 3 ( sửa -3x3 -> 3x2 )
= x4 - x3 - x3 + 3x2 - x2 + x2 - 3x + x - 3
= ( x4 - x3 + 3x2 ) - ( x3 - x2 + 3x ) - ( x2 - x + 3 )
= x2( x2 - x + 3 ) - x( x2 - x + 3 ) - 1( x2 - x + 3 )
= ( x2 - x - 1 )( x2 - x + 3 )
Bài 2.
A = 2x2 - 8x - 10
= 2( x2 - 4x + 4 ) - 18
= 2( x - 2 )2 - 18
2( x - 2 )2 ≥ 0 ∀ x => 2( x - 2 )2 - 18 ≥ -18
Đẳng thức xảy ra <=> x - 2 = 0 => x = 2
=> MinA = -18 <=> x = 2
B = 9x - 3x2
= -3( x2 - 3x + 9/4 ) + 27/4
= -3( x - 3/2 )2 + 27/4
-3( x - 3/2 )2 ≤ 0 ∀ x => -3( x - 3/2 )2 + 27/4 ≤ 27/4
Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2
=> MaxB = 27/4 <=> x = 3/2
Tìm GTNN hoặc GTLN của biểu thức
a ,A= 2 . | x - 3 | + | 2x - 10 |
b, B = | 1/4 x - 8 | + | 2 - 1/4 x |
a) \(A=2\left|x-3\right|+\left|2x-10\right|=\left|2x-3\right|+\left|10-2x\right|\ge\left|2x-3+10-2x\right|=7\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(2x-3\right)\left(10-2x\right)\ge0\)\(\Leftrightarrow\)\(\frac{3}{2}\le x\le5\)
b) \(B\left|\frac{1}{4}x-8\right|+\left|2-\frac{1}{4}x\right|\ge\left|\frac{1}{4}x-8+2-\frac{1}{4}x\right|=6\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(\frac{1}{4}x-8\right)\left(2-\frac{1}{4}x\right)\ge0\)\(\Leftrightarrow\)\(8\le x\le32\)
Tìm GTLN - GTNN của các biểu thức ?
* bài 1: Tìm GTNN:
a) A= (x - 5)² + (x² - 10x)² - 24
b) B= (x - 7)² + (x + 5)² - 3
c) C= 5x² - 6x +1
d) D= 16x^4 + 8x² - 9
e) A= (x + 1)(x - 2)(x - 3)(x - 6)
f) B= (x - 2)(x - 4)(x² - 6x + 6)
g) C= x^4 - 8x³ + 24x² - 8x + 25
h) D= x^4 + 2x³ + 2x² + 2x - 2
i) A= x² + 4xy + 4y² - 6x – 12y +4
k) B= 10x² + 6xy + 9y² - 12x +15
l) C= 5x² - 4xy + 2y² - 8x – 16y +83
m) A= (x - 5)^4 + (x - 7)^4 – 10(x - 5)²(x - 7)² + 9
* Bài 2: Tìm GTLN:
a) M= -7x² + 4x -12
b) N= -16x² - 3x +14
c) M= -x^4 + 4x³ - 7x² + 12x -5
d) N= -(x² + x – 2) (x² +9x+18) +27
* Bài 3:
1) Cho x - 3y = 1. Tìm GTNN của M= x² + 4y²
2) Cho 4x - y = 5. Tìm GTNN của 3x²+2y²
3) Cho a + 2b = 2. Tìm GTNN của a³ + 8b³
* Bài 4: Tìm GTLN và GTNN của các biểu thức:
1) A = (3 - 4x)/(x² + 1)
2) B= (8x + 3)/(4x² + 1)
3) C= (2x+1)/(x²+2)
A=2x^2-8x-10
B=9x-3x^2
Tìm GTLN hoặc GTNN
Cứu mik mai nộp
a. Ta có:
\(A=2x^2-8x+10\\ =2\left(x^2-4x+5\right)=2\left[\left(x^2-2.x.2+4\right)+1\right]\\ =2\left[\left(x-2\right)^2+1\right]\\ =2\left(x-2\right)^2+2\)
Vì \(\left(x-2\right)^2\ge0\forall x\Rightarrow2\left(x-2\right)^2\ge0\forall x\\ \Leftrightarrow2\left(x-2\right)^2+1\ge1\forall x\)
Dấu = xảy ra khi: \(2\left(x-2\right)^2=0\Leftrightarrow\left(x-2\right)^2=0\\ \Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy \(MinA=1\Leftrightarrow x=2\)
GTLN
\(A=2x^2-8x-10\)
\(A=2\left(x^2-4x-5\right)\)
\(A=2\left(x^2-2.x.2+2^2-2^2-5\right)\)
\(A=2\left[\left(x^2-4x+2^2\right)-4-5\right]\)
\(A=2\left(x-2\right)^2-9\)
suy ra \(\left(x-2\right)^2\ge-9\)
=> Min A = -9 khi \(\left(x-2\right)^2=0\Leftrightarrow x-2=0hayx=2\)
Vậy Min A = (-9) khi x =2
B= 3.(x2 + 3x)
= 3. ( x2 + 2. \(\frac{3}{2}\).x + \(\frac{9}{4}\)) -\(\frac{9}{4}\)
= 3. (x+\(\frac{3}{2}\))2-\(\frac{9}{4}\)
Ta có: 3.(x+\(\frac{3}{2}\))2 ≥ 0 vs mọi x
<=> 3.(x+\(\frac{3}{2}\))2-\(\frac{9}{4}\) ≤ -\(\frac{9}{4}\)
Dấu bằng xảy ra <=> x+\(\frac{3}{2}\)= 0
=> x = -\(\frac{3}{2}\)
Vậy vs x = -\(\frac{3}{2}\) thì max của B =-\(\frac{9}{4}\)
Cậu xem lại nhé nếu sai chỗ nào thì thông cảm cho tớ
Tìm GTLN hoặc GTNN của biểu thức
a) x*2+x b) 4x-12x+10 c) 2x-x*2-1
\(A=x^2+x\) . Có: \(x^2\ge x\Rightarrow x^2+x\ge0\)
Dấu '=' xảy ra khi: \(x^2+x=0\Rightarrow x\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Vậy: \(Min_A=0\) tại \(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
\(B=4x-12x+10\)
\(B=-8x+10\)
\(B=10-8x\)
Xét: \(x< 0\Rightarrow10-8x\ge10\)
Dấu '=' xảy ra khi: \(8x=0\Rightarrow x=0\)
Xét: \(x>0\Rightarrow10-8x\le10\)
Dấu '=' xảy ra khi: \(8x=0\Rightarrow x=0\)
Vậy: Khi x<0. \(Min_B=10\) tại \(x=0\)
Khi: x>0. \(Max_B=10\)tại \(x=0\)
K chắc
Tìm GTNN hoặc GTLN (nếu có) của:
a) A = \(\sqrt{x^2-2x+5}\)
b) B = 5 - \(\sqrt{x^2-6x+14}\)
a) \(A=\sqrt[]{x^2-2x+5}\)
\(\Leftrightarrow A=\sqrt[]{x^2-2x+1+4}\)
\(\Leftrightarrow A=\sqrt[]{\left(x+1\right)^2+4}\)
mà \(\left(x+1\right)^2\ge0,\forall x\in R\)
\(A=\sqrt[]{\left(x+1\right)^2+4}\ge\sqrt[]{4}=2\)
Dấu "=" xảy ra khi và chỉ khi \(x+1=0\Leftrightarrow x=-1\)
Vậy \(GTNN\left(A\right)=2\left(khi.x=-1\right)\)
b) \(B=5-\sqrt[]{x^2-6x+14}\)
\(\Leftrightarrow B=5-\sqrt[]{x^2-6x+9+5}\)
\(\Leftrightarrow B=5-\sqrt[]{\left(x-3\right)^2+5}\left(1\right)\)
Ta có : \(\left(x-3\right)^2\ge0,\forall x\in R\)
\(\Leftrightarrow\left(x-3\right)^2+5\ge5,\forall x\in R\)
\(\Leftrightarrow\sqrt[]{\left(x-3\right)^2+5}\ge\sqrt[]{5},\forall x\in R\)
\(\Leftrightarrow-\sqrt[]{\left(x-3\right)^2+5}\le-\sqrt[]{5},\forall x\in R\)
\(\Leftrightarrow B=5-\sqrt[]{\left(x-3\right)^2+5}\le5-\sqrt[]{5},\forall x\in R\)
Dấu "=" xả ra khi và chỉ khi \(x-3=0\Leftrightarrow x=3\)
Vậy \(GTLN\left(B\right)=5-\sqrt[]{5}\left(khi.x=3\right)\)
Tìm GTLN ( hoặc GTNN ) của bt sau : a) A = 2x^2 + 10 - 1 b) B = 3x - 2x^2
a) \(A=2x^2\)\(+\)\(10\)\(-\)\(1\)
\(=2\left(x^2+5x-\frac{1}{2}\right)\)
\(=2\left(x^2+2.x.\frac{5}{2}+\frac{25}{4}-\frac{25}{4}-\frac{1}{2}\right)\)
\(=2\left[\left(x+\frac{5}{2}\right)^2-\frac{27}{4}\right]\)
\(=2\left(x+\frac{5}{2}\right)^2\)\(=\frac{27}{2}\)> hoặc = \(\frac{-27}{2}\)\(=-13,5\)
Dấu bằng xảy ra \(\Leftrightarrow\)\(x+\frac{5}{2}=0\)
\(x=\frac{-5}{2}=-2,5\)
Vậy GTLN của A bằng -13,5 khi x = -2,5
b) \(B=3x-2x^2\)
\(=\)\(-2\left(x^2-2.x.\frac{3}{4}+\frac{9}{16}-\frac{9}{16}\right)\)
\(=-2\left[\left(x-\frac{3}{4}\right)^2-\frac{9}{16}\right]\)
\(=-2\left(x-0,75\right)^2\)\(+\)\(\frac{9}{8}\)< hoặc = \(\frac{9}{8}\)\(=\)\(1,125\)
Dấu bằng xảy ra \(\Leftrightarrow\)\(x-0,75=0\)
\(x=0,75\)
Vậy GTLN của B bằng 1,125 khi x = 0,75
tìm gtnn hoặc gtln
a, A=-6x+x^2+11
b,B=-1+2x^x+10x
a) Ta có : \(A=-6x+x^2+11\)
\(\Rightarrow A=\left(x^2-6x+9\right)+2\)
\(\Rightarrow A=\left(x-3\right)^2+2\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy \(minA=2\Leftrightarrow x=3\)
b) \(B=-1+2x^x+10x\)
\(\Rightarrow\)Tớ đang thắc mắc cái chỗ 2xx :)))