Những câu hỏi liên quan
NH
Xem chi tiết
KS
5 tháng 5 2019 lúc 10:39

Đặt \(\frac{a}{b}=x\Rightarrow\frac{b}{a}=\frac{1}{x}\)

\(\Rightarrow x^2+\frac{1}{x^2}-1>2\left(x-\frac{1}{x}\right)\)

\(\Leftrightarrow\frac{x^4-2x^3-x^2+2x+1}{x^2}>0\)

\(\Leftrightarrow x^3\left(x-2\right)-x\left(x-2\right)+1>0\)

\(\Leftrightarrow x\left(x-2\right)\left(x-1\right)\left(x+1\right)+1>0\)

Có: \(\left(x-2\right)\left(x-1\right)x\left(x+1\right)\)là tích của 4 số tự nhiên liên tiếp ta có:

\(\Rightarrow x\left(x-2\right)\left(x-1\right)\left(x+1\right)\ge0\)

\(\Rightarrow x\left(x-2\right)\left(x-1\right)\left(x+1\right)+1\ge1>0\)

Đúng không ta?

Bình luận (0)
KS
5 tháng 5 2019 lúc 10:58

Sửa từ dòng số 6:

\(\Leftrightarrow\)\(\left(x^2-x-2\right)\left(x^2-x\right)+1\ge0\)

Đặt \(x^2-x=t\)

\(\Rightarrow\left(t-2\right)t+1\ge0\)

\(\Leftrightarrow t^2-2t+1\ge0\)

\(\Leftrightarrow\left(t-1\right)^2\ge0\)( luôn đúng )

Dấu " = " xảy ra khi ........................

Bình luận (0)
HD
Xem chi tiết
LP
Xem chi tiết
HM
17 tháng 2 2017 lúc 22:01

..... ko biết đợi đứa khác đê

Bình luận (0)
TN
18 tháng 2 2017 lúc 17:57

C/m bằng biến đổi tương đương như sau

\(Σ\frac{a^2}{\left(b-c\right)^2}-2=\left(Σ\frac{a}{b-c}\right)^2-2Σ\frac{ab}{\left(b-c\right)\left(c-a\right)}-2\)

\(=\frac{\left(Σ\left(a^3-a^2b-a^2c+abc\right)\right)^2}{╥\left(a-b\right)^2}-2\frac{Σ\left(a^2b-a^2c\right)}{╥\left(a-b\right)}-2\)

\(=\frac{\left(Σ\left(a^3-a^2b-a^2c+abc\right)\right)^2}{╥\left(a-b\right)^2}+2-2\ge0\)

P/s: \(╥\) dùng thay cho ∏ nhé, tại olm đã ít kí hiệu lại ko cho paste nên dùng tạm

Bình luận (0)
AD
Xem chi tiết
PN
13 tháng 2 2016 lúc 11:18

Đặt  \(P=a^2+b^2+\left(\frac{1+ab}{a+b}\right)^2\), ta được:

\(P=\left(a+b\right)^2+\left(\frac{1+ab}{a+b}\right)^2-2ab\)

Áp dụng bất đẳng thức  Cô-si với bộ  \(\left(a+b\right)^2\) và  \(\left(\frac{1+ab}{a+b}\right)^2\), ta có:

\(P=\left(a+b\right)^2+\left(\frac{1+ab}{a+b}\right)^2-2ab\ge2\sqrt{\left(a+b\right)^2\left(\frac{1+ab}{a+b}\right)^2}-2ab=2\left(1+ab\right)-2ab=2\)

 

Bình luận (0)
TH
13 tháng 2 2016 lúc 9:39

moi hok lop 6

Bình luận (0)
PT
Xem chi tiết
NN
18 tháng 2 2022 lúc 10:02

Ta có:

\(\frac{a\left(b+c\right)}{b^2+bc+c^2}=\frac{a\left(b+c\right)\left(ab+bc+ca\right)}{\left(b^2+bc+c^2\right)\left(ab+bc+ca\right)}\)

\(\ge\frac{4a\left(b+c\right)\left(ab+bc+ca\right)}{\left(b^2+bc+c^2+ab+bc+ca\right)^2}=\frac{4a\left(ab+bc+ca\right)}{\left(b+c\right)\left(a+b+c\right)^2}\)

Tương tự ta được:

\(\frac{a\left(b+c\right)}{b^2+bc+c^2}+\frac{b\left(c+a\right)}{c^2+ca+a^2}+\frac{c\left(a+b\right)}{a^2+ab+b^2}\)

\(\ge\frac{4a\left(ab+bc+ca\right)}{\left(b+c\right)\left(a+b+c\right)^2}+\frac{4b\left(ab+bc+ca\right)}{\left(c+a\right)\left(a+b+c\right)^2}+\frac{4c\left(ab+bc+ca\right)}{\left(a+b\right)\left(a+b+c\right)^2}\)

Vậy ta cần chứng minh:

\(\frac{4a\left(ab+bc+ca\right)}{\left(b+c\right)\left(a+b+c\right)^2}+\frac{4b\left(ab+bc+ca\right)}{\left(c+a\right)\left(a+b+c\right)^2}+\frac{4c\left(ab+bc+ca\right)}{\left(a+b\right)\left(a+b+c\right)^2}\ge2\)

Ta viết lại bất đẳng thức trên thành:

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)

Đánh giá trên đúng theo bất đẳng thức Bunhiacopxki dạng phân thức. Vậy bất đẳng thức đã được chứng minh.

Bình luận (0)
 Khách vãng lai đã xóa
LC
Xem chi tiết
KN
1 tháng 8 2020 lúc 8:33

Xét \(\frac{a^3}{a^2+ab+b^2}-\frac{b^3}{a^2+ab+b^2}=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=a-b\)

Tương tự, ta được: \(\frac{b^3}{b^2+bc+c^2}-\frac{c^3}{b^2+bc+c^2}=b-c\)\(\frac{c^3}{c^2+ca+a^2}-\frac{a^3}{c^2+ca+a^2}=c-a\)

Cộng theo vế của 3 đẳng thức trên, ta được: \(\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\)\(-\left(\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\right)=0\)

\(\Rightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\)\(=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)

Ta đi chứng minh BĐT phụ sau: \(a^2-ab+b^2\ge\frac{1}{3}\left(a^2+ab+b^2\right)\)(*)

Thật vậy: (*)\(\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\ge0\)*đúng*

\(\Rightarrow2LHS=\Sigma_{cyc}\frac{a^3+b^3}{a^2+ab+b^2}=\Sigma_{cyc}\text{ }\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}\)\(\ge\Sigma_{cyc}\text{ }\frac{\frac{1}{3}\left(a+b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=\frac{1}{3}\text{​​}\Sigma_{cyc}\left[\left(a+b\right)\right]=\frac{2\left(a+b+c\right)}{3}\)

\(\Rightarrow LHS\ge\frac{a+b+c}{3}=RHS\)(Q.E.D)

Đẳng thức xảy ra khi a = b = c

P/S: Có thể dùng BĐT phụ ở câu 3a để chứng minhxD:

Bình luận (0)
 Khách vãng lai đã xóa
PQ
27 tháng 7 2020 lúc 22:28

1) ta chứng minh được \(\Sigma\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}=\Sigma\frac{b^4}{\left(a+b\right)\left(a^2+b^2\right)}\)

\(VT=\frac{1}{2}\Sigma\frac{a^4+b^4}{\left(a+b\right)\left(a^2+b^2\right)}\ge\frac{1}{4}\Sigma\frac{a^2+b^2}{a+b}\ge\frac{1}{8}\Sigma\left(a+b\right)=\frac{a+b+c+d}{4}\)

bài 2 xem có ghi nhầm ko

Bình luận (0)
 Khách vãng lai đã xóa
PQ
27 tháng 7 2020 lúc 22:50

3a biến đổi tí là xong

b tuong tự bài 1 

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
H24
4 tháng 4 2020 lúc 13:33

3 bài thì thấy 1 bài có trên mạng rồi, buồn thật:( Bài cuối từ từ tí mở Maple lên check đề. Thấy lạ lạ không dám làm ngay:v

Bài 1: Ez game, chỉ là Buffalo Way, mà Ji Chen (tác giả BĐT Iran 96 có giải rồi, mình không giải lại): hard inequalities

Bài 2: Đặt \(\left(a;b;c\right)=\left(\frac{3x}{x+y+z};\frac{3y}{x+y+z};\frac{3z}{x+y+z}\right)\) rồi quy đồng lên xem.

Bài 3: Tí check đề cái đã.

Bình luận (0)
 Khách vãng lai đã xóa
H24
4 tháng 4 2020 lúc 13:37

Bài 3: Biết lắm mà: Check: \(a=b=1;c=\frac{1}{2}\) thì \(VT-VP=-\frac{1}{8}< 0\)

P/s: Nếu bạn sửa đề, hãy đăng vào bên dưới câu hỏi bạn nhé! Để người đọc còn hiểu mình đang trả lời cái nào:D

Bình luận (0)
 Khách vãng lai đã xóa
H24
4 tháng 4 2020 lúc 14:28

Bài 1: Ji Chen có nêu một cách phân tích bán SOS rất hay: Tight inequalities

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NH
4 tháng 1 2020 lúc 9:40

hack hay sao

Bình luận (0)
 Khách vãng lai đã xóa
NH
4 tháng 1 2020 lúc 9:40

chứng minh ngắn là làm tắt

Bình luận (0)
 Khách vãng lai đã xóa
H24
4 tháng 1 2020 lúc 9:43

Nguyễn Huy Hoàng thế you làm tắt xem có được 2-3 dòng không:) 

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
H24
22 tháng 4 2020 lúc 20:41

Cách 3 :

\(a+b+c\ge2+abc\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge6+3abc\)

Từ điều kiện ta có thể suy ra : \(a+b+c\ge3\)

Từ đó ta có : \(6\le\frac{2}{3}\left(a+b+c\right)\left(ab+bc+ca\right)\)

Đến đây ta cần chứng minh :     \(\left(a+b+c\right)\left(ab+bc+ca\right)\ge\frac{2}{3}\left(a+b+c\right)\left(ab+bc+ca\right)+3abc\)

                                            \(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)(Đây là hệ quả của Cô-si)

Bình luận (0)
 Khách vãng lai đã xóa
NC
22 tháng 3 2020 lúc 11:03

Ta có: \(a^2+b^2+c^2\ge ab+bc+ac\ge3\sqrt[3]{a^2b^2+b^2c^2+c^2a^2}\)

=> \(\hept{\begin{cases}a^2+b^2+c^2\ge3\\1\ge abc\end{cases}}\)

Có:  \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ac\right)\ge3+6=9\)

=> \(a+b+c\ge3=2+1\ge2+abc\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
24 tháng 3 2020 lúc 14:53

Ngoài ra: Ta cũng có bất đẳng thức trên với điều kiện \(a+b+c=ab+bc+ca\). Cách chứng minh bằng \(\text{SOS}\)tương tự như trên nhưng chỉ đổi một vài dấu :)

Ghé thăm blog em tại: tthnew's blog, cảm ơn mn!

Bình luận (0)
 Khách vãng lai đã xóa