Đặt x = a + b; y = ab thì:
BĐt tương đương:
\(x^2-2y+\frac{\left(1+y\right)^2}{x^2}\ge2\)
\(\Leftrightarrow x^2\left(x^2-2y\right)+\left(1+y\right)^2-2x^2\ge0\)
\(\Leftrightarrow x^4-2x^2y+y^2+2y+1-2x^2\ge0\)
\(\Leftrightarrow\left(x^2-y-1\right)^2\ge0\left(lđ\right)\)
Đến đây bạn tự kết luận nha
Ta có phép biến đổi tương đương:
\(a^2+b^2+\frac{\left(ab+1\right)^2}{\left(a+b\right)^2}\ge2\Leftrightarrow\frac{\left(a+b\right)^2\left(a^2+b^2\right)+\left(ab+1\right)^2}{\left(a+b\right)^2}\ge2\)
\(\Leftrightarrow\left(a+b\right)^2\left(a^2+b^2\right)+\left(ab+1\right)^2\ge2\left(a+b\right)^2\)
\(\Leftrightarrow\left(a+b\right)^2\left[\left(a+b\right)^2-2ab\right]-2\left(a+b\right)^2+\left(ab+1\right)^2\ge0\)
\(\Leftrightarrow\left(a+b\right)^4-2ab\left(a+b\right)^2-2\left(a+b\right)^2+\left(ab+1\right)^2\ge0\)
\(\Leftrightarrow\left(a+b\right)^4-2\left(a+b\right)^2\left(ab+1\right)+\left(ab+1\right)^2\ge0\)
\(\Leftrightarrow\left[\left(a+b\right)^2-ab-1\right]^2\ge0\)(đúng với mọi a,b)
Các bđt trên tương đương với nhau nên bđt cần chứng minh đúng
Vậy \(a^2+b^2+\frac{\left(ab+1\right)^2}{\left(a+b\right)^2}\ge2\)