cho n là số nguyên tố không chia hết cho 3. CMR n2 chia 3 dư 1
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
a) Cho n là số nguyên tố không chia hết cho 3. Chứng minh rằng n 2 chia cho 3 dư 1.
b) Cho p là một số nguyên tố lớn hơn 3. Hỏi p 2 + 2003 là số nguyên tố hay hợp số
a) Cho n là số nguyên tố không chia hết cho 3 . Chứng minh rằng n 2 chia cho 3 dư 1.
b) Cho p là một số nguyên tố lớn hơn 3 . Hỏi p 2 + 2003 là số nguyên tố hay hợp số
a) Nếu n = 3k+1 thì n 2 = (3k+1)(3k+1) hay n 2 = 3k(3k+1)+3k+1
Rõ ràng n 2 chia cho 3 dư 1
Nếu n = 3k+2 thì n 2 = (3k+2)(3k+2) hay n 2 = 3k(3k+2)+2(3k+2) = 3k(3k+2)+6k+3+1 nên n 2 chia cho 3 dư 1.
b) p là số nguyên tố lớn hơn 3 nên không chia hết cho 3. Vậy p 2 chia cho 3 dư 1 tức là p 2 = 3 k + 1 do đó p 2 + 2003 = 3 k + 1 + 2003 = 3k+2004 ⋮ 3
Vậy p 2 + 2003 là hợp số
a) n không chia hết cho 3 => n chia cho 3 dư 1 hoặc 2
+) n chia cho 3 dư 1 : n = 3k + 1 => n2 = (3k +1).(3k +1) = 9k2 + 6k + 1 = 3.(3k2 + 2k) + 1 => n2 chia cho 3 dư 1
+) n chia cho 3 dư 2 => n = 3k + 2 => n2 = (3k +2).(3k+2) = 9k2 + 12k + 4 = 3.(3k2 + 4k +1) + 1 => n2 chia cho 3 dư 1
Vậy...
b) p là số nguyên tố > 3 => p lẻ => p2 lẻ => p2 + 2003 chẵn => p2 + 2003 là hợp số
a)cho n không chia hết cho 3.CMR : n^2 chia 3 dư 1
b)cho P là số nguyên tố lớn hơn 3. hỏi P^2014 + 2015 là số nguyên tố hay hợp số? vì sao
1) Tìm SBC và thương trong phép chia :
9** : 17=** biêts thương là số nguyên tố
2)a,cho n là số không chia hết cho 3. CMR n2 chia 3 dư 1
b,cho p là số nguyên tố lớn hơn 3.hỏi p2 +2003 là số nguyên tố hay hợp số
3)
1) Cho n là một số không chia hết cho 3 c/m : n^2 chia cho 3 dư 1
2) Cho p là 1 số nguyên tố > 3 . Hỏi p^2 + 2003 là số nguyên tố hay hợp số ?
2, p là số nguyên tố lớn hơn 3 nên p lẻ
=> p^2 lẻ
=? p^2+2003 chẵn => nó có nhiều hơn 2 ước (1;2; chinhsnos...)
=> p^2+2003 là hợp số
a) cho n là một số không chia hết cho 3. Chứng minh rằng n^2 chia cho 3 dư 1
b) cho p là một số nguyên tố lớn hơn 3. hỏi p^2 + 2003 là số nguyên tố hay hợp số
a﴿ n không chia hết cho 3 => n chia cho 3 dư 1 hoặc 2
+﴿ n chia cho 3 dư 1 : n = 3k + 1 => n 2 = ﴾3k +1﴿.﴾3k +1﴿ = 9k 2 + 6k + 1 = 3.﴾3k 2 + 2k﴿ + 1 => n 2 chia cho 3 dư 1
+﴿ n chia cho 3 dư 2 => n = 3k + 2 => n 2 = ﴾3k +2﴿.﴾3k+2﴿ = 9k 2 + 12k + 4 = 3.﴾3k 2 + 4k +1﴿ + 1 => n 2 chia cho 3 dư 1
Vậy...
b﴿ p là số nguyên tố > 3 => p lẻ => p 2 lẻ => p 2 + 2003 chẵn => p 2 + 2003 là hợp số
k minh nha
Cho n là số nguyên tố không chia hết cho 3 . Chứng minh rằng n2 chia cho 3 dư 1
vì n là số nguyên tố không chia hết cho 3 => khi chia n cho 3 ta có 2 dạng: n=3k+1 hoặc n= 3k+2 (k\(\in\) N )
*) xét n=3k+1 => n2=(3k+1)2=(3k+1).(3k+1)=(3k+1).3k+(3k+1).1
=9k2.3k+3k+1
= 3.(32+k+k) +1 chia 3 dư 1.(1)
*) xét n=3k+2. => n2=(3k+2)2=(3k+2).(3k+2) = (3k+2).3k+(3k+2).2
=9k2+6k+6k+4=9k2+6k+6k+3+1
=3.(3k2+2k+2k+1)+1 chia 3 dư 1. (2)
từ (1) và (2) => n2 chia 3 dư 1 với n là số nguyên tố không chia hết cho 3.
vậy n2 chia 3 dư 1 với n là số nguyên tố không chia hết cho 3.(đpcm)
chúc bạn năm mới hạnh phúc. k mình nha.
a) n không chia hết cho 3 => n chia cho 3 dư 1 hoặc 2
+) n chia cho 3 dư 1 : n = 3k + 1 => n 2 = (3k +1).(3k +1) = 9k 2 + 6k + 1 = 3.(3k 2 + 2k) + 1 => n 2 chia cho 3 dư 1
+) n chia cho 3 dư 2 => n = 3k + 2 => n 2 = (3k +2).(3k+2) = 9k 2 + 12k + 4 = 3.(3k 2 + 4k +1) + 1 => n 2 chia cho 3 dư 1
Vậy...
Nếu \(n=3k+1\)thì \(n^2=\left(3k+1\right)\left(3k+1\right)\)hay \(n^2=3k\left(3k+1\right)+3k+1\).
Rõ ràng \(n^2\)chia cho 3 dư 1.
Nếu \(n=3k+2\)thì \(n^2=\left(3k+2\right)\left(3k+2\right)\)hay \(n^2=3k\left(3k+2\right)+2\left(3k+2\right)\)
\(=3k\left(3k+2\right)+6k+4\).
Hai số hạng đầu chia hết cho 3, số hạng cuối chia hết cho 3 dư 1 nên \(n^2\)chia hết cho 3 dư 1
Cho n là một số không chia hết cho 3. Chứng minh rằng n 2 chia cho 3 dư 1
Có n không chia hết cho 3
=> n^2 không chia hết cho 3 (1)
Vì n^2 là số chính phương
=> n^2 chia cho 3 dư 1 hoặc 0 (2)
Từ (1) và (2) => n^2 chia 3 dư 1
Cho n là một số không chia hết cho 3. Chứng minh rằng n 2 chia cho 3 dư 1
Vì n không chia hết cho 3 nên n có thể được viết dưới dạng n = 3k+1 hoặc n = 3k+2 (k ∈ N*)
Nếu n = 3k+1 thì n 2 = (3k+1)(3k+1) = 3k(3k+1)+3k+1. Suy ra n 2 chia cho 3 dư 1.
Nếu n = 3k+2 thì n 2 = (3k+2)(3k+2) = 3k(3k+2)+6k+4.Suy ra n 2 chia cho 3 dư 1.
=> ĐPCM