Những câu hỏi liên quan
NK
Xem chi tiết
NH
14 tháng 2 2017 lúc 11:18

\(B=\frac{2x^2+4xy}{y^2+z^2}=\frac{2x\left(x+2y\right)}{y^2+z^2}\)

\(\hept{\begin{cases}x-y-z=0\\x+2y-10z=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x-y=z\\x+2y=10z\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=4z\\y=3z\end{cases}}\)

Thay vào B, ta được: \(B=\frac{2.\left(4z\right)^2+4.4z.3z}{\left(3z\right)^2+z^2}=\frac{2.4^2+3.4^2}{3^2+1}=8\)

=> 

Bình luận (0)
NK
14 tháng 2 2017 lúc 18:50

 Cho a+b+c=0 và a+b2 +c=1.Tìm a4+b4+c4.

Bình luận (0)
H24
Xem chi tiết
PL
Xem chi tiết
H24
7 tháng 4 2017 lúc 7:52

Mình không biết! Xin lỗi nha! Nhớ tk mình! ~ Chúc bạn học giỏi ~ tth~ xin hết!

Bình luận (0)
PH
7 tháng 4 2017 lúc 9:18

hay nhể

Bình luận (0)
NC
3 tháng 11 2017 lúc 13:14

hay vc~

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
NG
9 tháng 3 2017 lúc 9:42

x-y-z=0 =>x-y=z => 2x - 2y =2z     (1)

x+2y-10z=0 => x+2y =10z             (2)

Cộng 2 vế (1) và (2) : =>3x=12z  => x=4z

Thay x=4z vào x-y-z=0 ta đc:

4z-y-z=0 => 3z-y=0   => y=3z

Thay x=4z;y=3z vào B ta tính đc B=8

Bình luận (0)
H24
9 tháng 3 2017 lúc 9:33

hjhj kb vs mik nhé 

Bình luận (0)
NA
Xem chi tiết
ON
Xem chi tiết
TN
Xem chi tiết
AH
11 tháng 11 2023 lúc 16:57

Lời giải:
$4x^2+2y^2+2z^2-4xy-4xz+2yz-6y-10z+34=0$

$(4x^2+y^2+z^2-4xy-4xz+2yz)+y^2+z^2-6y-10z+34=0$

$(2x-y-z)^2+(y^2-6y+9)+(z^2-10z+25)=0$
$(2x-y-z)^2+(y-3)^2+(z-5)^2=0$

Vì $(2x-y-z)^2\geq 0; (y-3)^2\geq 0; (z-5)^2\geq 0$ với mọi $x,y,z$

Do đó để tổng của chúng bằng $0$ thì bản thân mỗi số đó bằng $0$

$\Rightarrow 2x-y-z=y-3=z-5=0$

$\Rightarrow y=3; z=5; x=4$

Khi đó:
$P=0^{2023}+(-1)^{2025}+(5-4)^{2027}=0$

Bình luận (0)
PB
Xem chi tiết
CT
16 tháng 6 2017 lúc 9:31

Bình luận (0)