Những câu hỏi liên quan
HD
Xem chi tiết
TH
Xem chi tiết
KP
9 tháng 6 2018 lúc 8:44

ta có\(\sqrt{625}\)=25

\(\sqrt{576}\)=24

\(\Rightarrow\)24-1/\(\sqrt{6}\)+1

\(\Rightarrow\)24+-1/\(\sqrt{6}\)

\(\Rightarrow\)25-1/\(\sqrt{6}\)

\(\Rightarrow\)A<B

Bình luận (0)
NM
Xem chi tiết
an
3 tháng 1 2016 lúc 18:15

√625=25

Ta co √576=24

=> 24-1/√6+1

=> 24+-1/√6+1

=> 25+-1/√6

=> 25-1/√6

=> A<B

Bình luận (0)
NA
3 tháng 1 2016 lúc 16:46

Ta có : căn bậc hai của 625 =25 

           căn bậc hai của 576 =24 cộng 1 =25

→ căn bậc hai của 625 = căn bậc hai của 576 cộng 1 (1)

          5< 6 → căn bậc 2 của 5 < của 6 → 1/ căn bậc 2 của 5 > 1/ căn bậc 2 của 6 (2)

Từ (1) và (2) → A< B

Nhớ tick nha!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Bình luận (0)
LM
1 tháng 2 2017 lúc 9:16

bạn cứ tinh bình thường ra là xong

\(A=\sqrt{625}-\frac{1}{\sqrt{5}}=24.5527864\)                              \(B=\sqrt{576}-\frac{1}{\sqrt{6}}+1=24.59175\)

nhìn cũng biết B>A

nhơ tích đúng cho mình nha !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Bình luận (0)
SK
Xem chi tiết
TN
10 tháng 6 2017 lúc 11:10

\(A=\sqrt{625}-\dfrac{1}{\sqrt{5}}=25-\dfrac{1}{\sqrt{5}}\)

\(B=\sqrt{576}-\dfrac{1}{\sqrt{6}}+1=24-\dfrac{1}{\sqrt{6}}+1=25-\dfrac{1}{\sqrt{6}}.\)

\(\sqrt{5}< \sqrt{6}\) nên \(\dfrac{1}{\sqrt{5}}>\dfrac{1}{\sqrt{6}}.\)

Từ (1), (2) và (3) suy ra \(A< B.\)

Bình luận (0)
PG
7 tháng 9 2017 lúc 16:32

B<A

Bình luận (0)
LL
31 tháng 10 2018 lúc 21:32

A=\(\sqrt{625}\)\(\dfrac{1}{\sqrt{5}}\)

⇒A= 25-\(\dfrac{1}{\sqrt{5}}\)

B =\(\sqrt{576}\) - \(\dfrac{1}{\sqrt{6}}+1\)

⇒B = 24-\(\dfrac{1}{\sqrt{6}}+1\)

Hay: B = (24+1)-\(\dfrac{1}{\sqrt{6}}\)

⇒ B=25-\(\dfrac{1}{\sqrt{6}}\)

Vì: 25-\(\dfrac{1}{\sqrt{5}}\) > 25-\(\dfrac{1}{\sqrt{6}}\)

Vậy: A > B

Bình luận (0)
HD
Xem chi tiết
DT
Xem chi tiết
XO
15 tháng 3 2020 lúc 23:31

a)Ta có : \(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10=\sqrt{100}>\sqrt{99}\)

\(\Rightarrow\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)(đpcm)

b) Ta có : \(\sqrt{625}-\frac{1}{\sqrt{5}}=25-\frac{1}{\sqrt{5}}>25-\frac{1}{\sqrt{6}}=24-\frac{1}{\sqrt{6}}+1=\sqrt{576}-\frac{1}{\sqrt{6}}+1\)

\(\Rightarrow\sqrt{625}-\frac{1}{\sqrt{5}}>\sqrt{576}-\frac{1}{\sqrt{6}}+1\)(đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
RC
Xem chi tiết
TP
4 tháng 11 2018 lúc 16:02

Bài 2 :

Giả sử \(a=\sqrt{3}\)là số hữu tỉ

Khi đó ta có \(a=\sqrt{3}=\frac{m}{n}\)với m, n tối giản ( n khác 0 )

Từ \(\sqrt{3}=\frac{m}{n}\Rightarrow m=\sqrt{3}n\)

Bình phương 2 vế ta được đẳng thức: \(m^2=3n^2\)(*)

\(\Rightarrow m^2⋮3\)mà m tối giản \(\Rightarrow m⋮3\)

=> m có dạng \(3k\)

Thay m vào (*) ta có : \(9k^2=3n^2\)

\(\Leftrightarrow3k^2=n^2\)

\(\Leftrightarrow n=\sqrt{3}k\)

Vì k là số nguyên => n không là số nguyên

=> điều giả sử là sai

=> \(\sqrt{3}\)là số vô tỉ

Bình luận (0)
LT
Xem chi tiết
KL
Xem chi tiết
NM
23 tháng 4 2021 lúc 14:42

a) 3\(\sqrt{3}\)=\(\sqrt{27}\)>\(\sqrt{12}\)

c) \(\frac{1}{3}\)\(\sqrt{51}\)=\(\sqrt{\frac{51}{9}}\)<\(\frac{1}{5}\)\(\sqrt{150}\)=\(\sqrt{\frac{150}{25}}\)=\(\sqrt{6}\)

b) 3\(\sqrt{5}\)=\(\sqrt{45}\)< 7=\(\sqrt{49}\)

d) \(\frac{1}{2}\sqrt{6}\)=\(\sqrt{\frac{6}{4}}\)=\(\sqrt{\frac{3}{2}}\)< 6\(\sqrt{\frac{1}{2}}\)=\(\sqrt{\frac{36}{2}}\)=\(\sqrt{18}\)

Bình luận (0)
 Khách vãng lai đã xóa
PH
28 tháng 5 2021 lúc 15:47

a) Ta có: 33=32.3=9.3=27

Vì 27>12 nên 33>12

Vậy 33>12.
b) Ta có: 35=32.5=45

7=72=49

Vì 49>45 nên 7>35

Vậy 7>35.

 nên 

.

Bình luận (0)
 Khách vãng lai đã xóa
DC
11 tháng 6 2021 lúc 21:07

a) \(3\sqrt{3}=\sqrt{9}.\sqrt{3}=\sqrt{27}>\sqrt{12}\)

b) \(3\sqrt{5}=\sqrt{9}.\sqrt{5}=\sqrt{45}< \sqrt{49}=7\)

c) \(\dfrac{1}{3}\sqrt{51}=\sqrt{\dfrac{1}{9}}.\sqrt{51}=\sqrt{\dfrac{51}{9}}=\sqrt{\dfrac{17}{3}}< \sqrt{6}=\dfrac{1}{5}\sqrt{150}\)

d) \(\dfrac{1}{2}\sqrt{6}=\sqrt{\dfrac{3}{2}}< \sqrt{18}=6\sqrt{\dfrac{1}{2}}\)

Bình luận (0)
 Khách vãng lai đã xóa