Những câu hỏi liên quan
TH
Xem chi tiết
NT
Xem chi tiết
NT
19 tháng 7 2021 lúc 10:53

a, Ta có : 

\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\Rightarrow\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{4+9-4}=\dfrac{50-5}{9}=5\)

\(\Rightarrow x=11;y=17;z=23\)

b, Đặt \(\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\Rightarrow xyz=810\)

\(\Rightarrow2k.3k.5k=810\Leftrightarrow30k^3=810\Leftrightarrow k^3=27\Leftrightarrow k=3\)

\(\Rightarrow x=6;y=9;z=15\)

Bình luận (0)
TG
19 tháng 7 2021 lúc 10:58

a) Ta có: \(\dfrac{x-1}{2}=\dfrac{2x-2}{4};\dfrac{y-2}{3}=\dfrac{3y-6}{9};\dfrac{z-3}{4}\)

Áp dụng t/c dtsbn:

\(\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}=\dfrac{2x-2+3y-6-z+3}{4+9-4}=5\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x-1}{2}=5\\\dfrac{y-2}{3}=5\\\dfrac{z-3}{4}=5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=11\\y=17\\z=12\end{matrix}\right.\)

b) Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\)

xyz = 810

=> 2k.3k.5k = 810

=> k = 3

\(\Rightarrow\left\{{}\begin{matrix}x=6\\y=9\\z=15\end{matrix}\right.\)

Bình luận (0)
NT
19 tháng 7 2021 lúc 11:45

a) Ta có: \(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\)

nên \(\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}\)

mà 2x+3y-z=50

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{4+9-4}=\dfrac{50-5}{9}=5\)

Do đó:

\(\left\{{}\begin{matrix}x-1=10\\y-2=15\\z-3=20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=11\\y=17\\z=23\end{matrix}\right.\)

b) Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\)

Ta có: xyz=810

\(\Leftrightarrow30k^3=810\)

\(\Leftrightarrow k^3=27\)

\(\Leftrightarrow k=3\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2k=2\cdot3=6\\y=3k=3\cdot3=6\\z=5k=5\cdot3=15\end{matrix}\right.\)

Bình luận (0)
TD
Xem chi tiết
AH
18 tháng 6 2021 lúc 18:54

Lời giải:
a.

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{2}=\frac{y}{\frac{3}{2}}=\frac{z}{\frac{4}{3}}=\frac{x-y}{2-\frac{3}{2}}=\frac{15}{\frac{1}{2}}=30\)

\(\Rightarrow \left\{\begin{matrix} x=60\\ y=45\\ z=40\end{matrix}\right.\)

b)

Từ đkđb suy ra \(\frac{10x}{1}=\frac{5y}{\frac{1}{3}}=\frac{z}{\frac{1}{6}}=\frac{10x-5y+z}{1-\frac{1}{3}+\frac{1}{6}}=\frac{25}{\frac{5}{6}}=30\)

\(\Rightarrow \left\{\begin{matrix} x=3\\ y=2\\ z=5\end{matrix}\right.\)

 

Bình luận (0)
NT
Xem chi tiết
NT
16 tháng 7 2021 lúc 13:52

undefined

Bình luận (2)
NC
Xem chi tiết
MH
15 tháng 9 2021 lúc 19:36

\(\dfrac{x}{2}=\dfrac{y}{3}\text{⇒}\dfrac{x}{10}=\dfrac{y}{15}\)

\(\dfrac{y}{5}=\dfrac{z}{4}\text{⇒}\dfrac{y}{15}=\dfrac{z}{12}\)

\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x-y+z}{10-15+12}=\dfrac{-21}{-3}=7\)

⇒x=70;y=105;z=84

Bình luận (0)
MH
15 tháng 9 2021 lúc 19:40

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)\(\dfrac{x^2}{4}=\dfrac{2y^2}{18}=\dfrac{z^2}{25}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x^2}{4}=\dfrac{2y^2}{18}=\dfrac{z^2}{25}=\dfrac{x^2-2y^2+z^2}{4-18+25}=\dfrac{44}{11}=4\)

⇒x=8;y=12;z=20

Bình luận (0)
YC
Xem chi tiết
NT
23 tháng 2 2023 lúc 22:26

a: 2x-3y-4z=24

Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{1}=\dfrac{y}{6}=\dfrac{z}{3}=\dfrac{2x-3y-4z}{2\cdot1-3\cdot6-4\cdot3}=\dfrac{24}{-28}=\dfrac{-6}{7}\)

=>x=-6/7; y=-36/7; z=-18/7

b: 6x=10y=15z

=>x/10=y/6=z/4=k

=>x=10k; y=6k; z=4k

x+y-z=90

=>10k+6k-4k=90

=>12k=90

=>k=7,5

=>x=75; y=45; z=30

d: x/4=y/3

=>x/20=y/15

y/5=z/3

=>y/15=z/9

=>x/20=y/15=z/9

Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{20}=\dfrac{y}{15}=\dfrac{z}{9}=\dfrac{x-y-z}{20-15-9}=\dfrac{-100}{-4}=25\)

=>x=500; y=375; z=225

Bình luận (0)
PJ
Xem chi tiết
H24
11 tháng 1 2022 lúc 22:23

a, \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}x-3,2y-6\in Z\\x-3,2y-6\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\end{matrix}\right.\)

Ta có bảng:

x-3-1-515
2y-6-5-151
x2-248
y\(\dfrac{1}{2}\left(loại\right)\)\(\dfrac{5}{2}\left(loại\right)\)\(\dfrac{11}{2}\left(loại\right)\)\(\dfrac{7}{2}\left(loại\right)\)

Vậy không có x,y thỏa mãn đề bài 

b, tương tự câu a

 \(c,xy-5x+2y=7\\ \Rightarrow x\left(y-5\right)+2y-10=-3\\ \Rightarrow x\left(y-5\right)+2\left(y-5\right)=-3\\ \Rightarrow\left(x+2\right)\left(y-5\right)=-3\)

Rồi làm tương tự câu a

\(d,xy-3x-4y=5\\ \Rightarrow x\left(y-3\right)-4y+12=17\\ \Rightarrow x\left(y-3\right)-4\left(y-3\right)=17\\ \Rightarrow\left(x-4\right)\left(y-3\right)=17\)

Rồi làm tương tự câu a

 

Bình luận (0)
TL
Xem chi tiết
AH
30 tháng 9 2021 lúc 17:30

Lời giải:

a. Áp dụng TCDTSBN:

\(\frac{x}{y}=\frac{2}{5}\Rightarrow \frac{x}{2}=\frac{y}{5}=\frac{2x}{4}=\frac{y}{5}=\frac{2x-y}{4-5}=\frac{3}{-1}=-3\)

$\Rightarrow x=-3.2=-6; y=-3.5=-15$

b. Áp dụng TCDTSBN:

$\frac{x}{2}=\frac{y}{3}; \frac{y}{4}=\frac{z}{7}$

$\Rightarrow \frac{x}{8}=\frac{y}{12}=\frac{z}{21}$

$=\frac{2x}{16}=\frac{y}{12}=\frac{z}{21}=\frac{2x-y+z}{16-12+21}=\frac{50}{25}=2$

$\Rightarrow x=8.2=16; y=2.12=24; z=2.21=42$

c.

$\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$

$\Rightarrow \frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{2z^2}{32}$

$=\frac{x^2-y^2+2z^2}{4-9+32}=\frac{108}{27}=4$

$\Rightarrow x^2=4.4=16; y^2=9.4=36; z^2=4.4=16$

Kết hợp với đkxđ suy ra:
$(x,y,z)=(4,6,4); (-4; -6; -4)$

Bình luận (1)
KJ
Xem chi tiết
AH
18 tháng 12 2021 lúc 17:02

Lời giải:
a. Vì $x,y$ thuộc $Z$ nên $x-3, y+5\in\mathbb{Z}$. Tích của chúng $=11$ nên ta có bảng sau:

x-3111-1-11
y+5111-11-1
x4142-8
y6-4-16-6

b. Vì $x,y\in\mathbb{Z}$ nên $2x+1, 6-y\in\mathbb{Z}$.

Với $x$ nguyên thì $2x+1$ là số nguyên lẻ nên ta có bảng sau:

2x+11-13-3
6-y12-124-4
x0-11-2
y-618210

 

 

Bình luận (1)
PN
Xem chi tiết
NT
1 tháng 2 2022 lúc 18:18

a: =>xy=-18

=>x,y khác dấu

mà x<y<0 

nên không có giá trị nào của x và y thỏa mãn yêu cầu đề bài

b: =>(x+1)(y-2)=3

\(\Leftrightarrow\left(x+1,y-2\right)\in\left\{\left(1;3\right);\left(3;1\right);\left(-1;-3\right);\left(-3;-1\right)\right\}\)

hay \(\left(x,y\right)\in\left\{\left(0;5\right);\left(2;3\right);\left(-2;-1\right);\left(-4;1\right)\right\}\)

c: \(\Leftrightarrow8x-4=3x-9\)

=>5x=-5

hay x=-1

Bình luận (0)