tìm n
a) 27-5n chia hết n
b) n+3 chia hết cho n-1
c) 4n+3 chia hết cho 2n-1
d) 3n-5 chia hết n+1
Tìm n thuộc N, biết:
1) 2n+3 chia hết 3n+1
2)2n-2 chia hết cho n-1
3) 5n-1 chia hết cho n-2
4)3n+1 chia hết cho 2n+2
5)2n-1 chia hết cho 5n-3
6)n-3 chia hết cho n+4
7) 3n+3 chia hết cho n+2
8)4n chia hết cho n-3
9)5n+1 chia hết cho n+3
10)2n-2 chia hết cho n+3
2) Ta có : 2n - 2 = 2(n - 1) chia hết cho n - 1
Nên với mọi giá trị của n thì 2n - 2 đều chia hết cho n - 1
3) Ta có : 5n - 1 chia hết chi n - 2
=> 5n - 10 + 9 chia hết chi n - 2
=> 5(n - 2) + 9 chia hết chi n - 2
=> n - 2 thuộc Ư(9) = {1;3;9}
Ta có bảng :
n - 2 | 1 | 3 | 9 |
n | 3 | 5 | 11 |
1) Ta có : 2n + 3 chia hết cho 3n + 1
<=> 6n + 9 chia hết cho 3n + 1
<=> 6n + 2 + 7 chia hết cho 3n + 1
=> 7 chia hết cho 3n + 1
=> 3n + 1 thuộc Ư(7) = {1;7}
Ta có bảng :
3n + 1 | 1 | 7 |
3n | 0 | 6 |
n | 0 | 2 |
Vậy n thuộc {0;2}
TÌM n THUỘC N ,biết:
a)n+4 chia hết cho n
b)3n +11 chia hết cho n +2
c)n + 8 chia hết cho n+3
d)2n+3 chia hết cho 3n+1
e)12-n chai hết cho 8-n
f) 27-5n chia hết cho n +3
giúp em vs ạ/em cảm mơn
a. n + 4 \(⋮\) n
\(\Rightarrow\left\{{}\begin{matrix}n⋮n\\4⋮n\end{matrix}\right.\)
4 \(⋮\) n
\(\Rightarrow\) n \(\in\) Ư (4) = {1; 2; 4}
\(\Rightarrow\) n \(\in\) {1; 2; 4}
c. n + 8 \(⋮\) n + 3
n + 3 + 5 \(⋮\) n + 3
\(\Rightarrow\left\{{}\begin{matrix}n+3\text{}⋮n+3\\5⋮n+3\end{matrix}\right.\)
\(\Rightarrow\) 5 \(⋮\) n + 3
\(\Rightarrow\) n + 3 \(\in\) Ư (5) = {1; 5}
n + 3 | 1 | 5 |
n | vô lí | 2 |
\(\Rightarrow\) n = 2
b. 3n + 11 \(⋮\) n + 2
3n + 6 + 5 \(⋮\) n + 2
3(n + 2) + 5 \(⋮\) n + 2
\(\Rightarrow\left\{{}\begin{matrix}3\left(n+2\right)\text{}⋮n+2\\5⋮n+2\end{matrix}\right.\)
\(\Rightarrow\) 5 \(⋮\) n + 2
\(\Rightarrow\) n + 2 \(\in\) Ư (5) = {1; 5}
n + 2 | 1 | 5 |
n | vô lí | 3 |
\(\Rightarrow\) n = 3
Tìm n thuộc N, biết:
1) 2n+3 chia hết 3n+1
2)2n-2 chia hết cho n-1
3) 5n-1 chia hết cho n-2
4)3n+1 chia hết cho 2n+2
5)2n-1 chia hết cho 5n-3
6)n-3 chia hết cho n+4
7) 3n+3 chia hết cho n+2
8)4n chia hết cho n-3
9)5n+1 chia hết cho n+3
10)2n-2 chia hết cho n+3
Ta có n-3=n+4-7
6)=>n-4+7 chia hết cho n+4
=>7 chia hết cho n+4
=> n+4 thuộc Ư(7)
=> n+4 thuộc {1, -1,7,-7}
=> n thuộc {-3,-5,3,-11}
tìm n
a) 27-5n chia hết n
b) n+3 chia hết cho n-1
c) 4n+3 chia hết cho 2n-1
d) 3n-5 chia hết n+1
a/ \(27-5n⋮n\)
Mà \(n⋮n\)
\(\Leftrightarrow\left\{{}\begin{matrix}27-5n⋮n\\5n⋮n\end{matrix}\right.\)
\(\Leftrightarrow27⋮n\Leftrightarrow n\inƯ\left(27\right)=\left\{\pm1;\pm2;\pm3;\pm9;\pm27\right\}\)
b/ \(n+3⋮n-1\)
Mà \(n-1⋮n-1\)
\(\Leftrightarrow4⋮n-1\) \(\Leftrightarrow n-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
+) \(n-1=1\Leftrightarrow n-2\)
+) \(n-1=-1\Leftrightarrow n=0\)
+) \(n-1=2\Leftrightarrow n=3\)
+) \(n-1=-2\Leftrightarrow n=-1\)
+) \(n-1=4\Leftrightarrow n=5\)
+) \(n-1=-4\Leftrightarrow n=-3\)
Vây...
c/ \(4n+3⋮2n-1\)
Mà \(2n-1⋮2n-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}4n+3⋮2n-1\\4n-2⋮2n-1\end{matrix}\right.\)
\(\Leftrightarrow5⋮2n-1\Leftrightarrow2n-1\inƯ\left(5\right)\)
+) \(2n-1=1\Leftrightarrow n=1\)
+) \(2n-1=-1\Leftrightarrow n=0\)
+) \(2n-1=5\Leftrightarrow n=3\)
+) \(2n-1=-5\Leftrightarrow n=-2\)
Vậy...
d/ \(3n-5⋮n+1\)
Mà \(n+1⋮n+1\)
\(\Leftrightarrow\left\{{}\begin{matrix}3n-5⋮n+1\\3n+3⋮n+1\end{matrix}\right.\)
\(\Leftrightarrow8⋮n+1\Leftrightarrow n+1\inƯ\left(8\right)\)
Tìm số tự nhiên n để:
1/ 4n2 + 2n + 36 chia hết 2n
2/ n2 + 4n + 96 chia hết n + 1
3/ n2 + 5n + 58 chia hết n
4/ 27 – 5n chia hết n
5/ 5n + 26 chia hết n + 1
6/ 3n + 25 chia hết 3n + 2
Tìm n thuộc N:
a. 2n + 3 chia hết cho n + 1
b. 3n + 5 chia hết cho n - 1
c. 4n + 10 chia hết cho 2n + 3
d. 5n + 6 chia hết cho 3n +1
Tìm n thuộc N:
a/ 2n + 3 chia hết cho n + 1
b/ 3n + 5 chia hết cho n - 1
c/ 4n + 10 chia hết cho 2n + 3
d/ 5n + 6 chia hết cho 3n + 1
a: \(\Leftrightarrow2n+2+1⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;-1\right\}\)
hay \(n\in\left\{0;-2\right\}\)
b: \(\Leftrightarrow3n-3+8⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
hay \(n\in\left\{2;0;3;-1;5;-3;9;-7\right\}\)
c: \(\Leftrightarrow4n+6+4⋮2n+3\)
\(\Leftrightarrow2n+3\in\left\{1;-1\right\}\)
hay \(n\in\left\{-1;-2\right\}\)
d: \(\Leftrightarrow15n+18⋮3n+1\)
\(\Leftrightarrow15n+5+13⋮3n+1\)
\(\Leftrightarrow3n+1\in\left\{1;-1;13;-13\right\}\)
hay \(n\in\left\{0;4\right\}\)
Câu 1 Tìm n thuộc Z biết
a, 6 chia hết cho n-2
b,27-5n chia hết cho n
c,4n+3 chia hết cho 2n+1
d,3n+1 chia hết cho 11-n
a, 6 chia hết cho n-2 => n-2 thuộc Ư(6)=(1,-1,2,-2,3,-3,6,-6)
hay n thuộc (3,1,4,0,5,-1,8,-4). Mà n thuộc Z
=> n= 3,1,4,0,5,-1,8,-4)
c, 4n+3 chia hết cho 2n+1 => 2(2n+1)+1 chia hết cho 2n+1
Mà 2(2n+1) chia hết cho 2n+1 => 1 chia hết cho 2n+1 hay 2n+1 thuộc Ư(1)=(1,-1)
=> n thuộc (0,-1)
Do n thuộc Z => n=0,-1
d, 3n+1 chia hết cho 11-n => -3(11-n)+34 chia hết cho 11-n
Mà -3(11-n) chia hết cho 11-n => 34 chia hết cho 11-n hay .........( làm tương tự câu c)
a) n-2 thuộc ước của 6
Ư (6)={+-1;+-2;+-3;+-6}
n-2=1 => n=3
n-2=-1 => n=1
n-2=2 => n=4
n-2=-2 => n=0
n-2=3 => n=5
n-2=-3 => n=-1
n-2=6 => n=8
n-2=-6 => n=-4
b) do 5n chia hết cho n nên 27 phải chia hết cho n
n thuộc N nên n =1,3,9,27
và 5n< hoặc =27
suy ra n=1 hoặc 3
n=1 thỏa mãn
n=3 thỏa mãn
suy ra 2 nghiệm
c) 4n-5 chia hết cho 2n-1
P = (4n-5)/(2n-1) = (4n-2 - 3)/(2n-1) = 2 - 3/(2n-1)
P thuộc Z khi và chỉ khi 3/(2n-1) thuộc Z <=> 2n-1 là ước của 3
* 2n - 1 = -1 <=> n = 0
* 2n - 1 = -3 <=> n = -1 (loại, vì n tự nhiên)
* 2n - 1 = 1 <=> n = 1
* 2n - 1 = 3 <=> n = 2
Vậy có 3 giá trị của n tự nhiên là: 0, 1, 2
d) 3n+1 chia hết cho 11-2n
+ 3n+1 chia hết cho 11-2n => 2(3n+1) chia hết cho 11-2n. Ta tìm điều kiện của n để 2(3n+1) chia hết cho 11-2n
+ 2(3n+1)=6n+2= -3(11-2n)+35 Ta thấy -3(11-2n) chia hết cho 11-2n => để 2(3n+1) chia hết cho 11-2n thì 35 phải chia hết cho 11-2n.
=> để 35 chia hết cho 11-2n thì 11-2n=-1, 1, -5, 5, -7, 7, -35, 35.
* Với 11-2n=-1 => n=6
* Với 11-2n=1 => n=5
* Với 11-2n=-5 => n=8
* Với 11-2n=5 => n=3
* Với 11-2n=-7 =>n=9
* Với 11-2n=7 => n=2
* Với 11-2n=-35 => n=23
* Với 11-2n=35 => n=-12
Với n=2, 3, 5, 6, 8, 9, 23, -12 thì 3n+1 chia hết cho 11-2n
các bn làm đúng rồi đó
Tìm số nguyên n sao cho :
a ) 4n - 5 : 2n -1
b) 2- 4n chia hết cho n-1
c) n^2 + 3n + 1 : n + 1
D) 3 n + 5 chia hết cho n -2
a: \(\Leftrightarrow2n-1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{1;0;2;-1\right\}\)
c: \(\Leftrightarrow n+1\in\left\{1;-1\right\}\)
hay \(n\in\left\{0;-2\right\}\)