cho P(x)=x^3+ax^2+bx+c; Q(x)=x^2+x+2015, biết đa thức P(x) có 3 nghiệm phân biệt, còn đa thức P(Q(x))=0 vô nghiệm. CMR P(2015)>1/64
12 Tìm a,b,c để:
a) (x^4+ax^3+bx+c) chia hết cho (x-3)^3
b) (x^5+x^4-9x^3+ax^2+bx+c) chia hết cho (x-2)(x+2)(x+3)
c) (2x^4+ax^2+bx+c) chia hết cho x-2 và khi chia cho x^2-1 thì dư x
12 Tìm a,b,c để:
a) (x^4+ax^3+bx+c) chia hết cho (x-3)^3
b) (x^5+x^4-9x^3+ax^2+bx+c) chia hết cho (x-2)(x+2)(x+3)
c) (2x^4+ax^2+bx+c) chia hết cho x-2 và khi chia cho x^2-1 thì dư x
1.tìm a,b để:
a)\(x^3+ax+bx+6⋮\left(x-1\right)\)
b)\(x^4+ax^3+bx^2+5x+1⋮\left(x+1\right)^2\)
c)\(^{x^4+3x^3+ax^2+bx+5⋮\left(x-2\right)^2}\)
d)\(x^4+10x^3+ax^2+bx+7⋮\left(x+2\right)^2\)
e)\(x^4+ax^3+5x^2+bx+1⋮x-1\)
2.Cho a+b+c=0.tính\(\left(a+b+c\right)^3+\left(b+a-c\right)^3+\left(c+a-b\right)^3\)
bài 2:
\(A=\left(a+b+c\right)^3+\left(b+a-c\right)^3+\left(c+a-b\right)^3\)
\(=\left(c+b+a-2c\right)^3+\left(c+a+b-2b\right)^3\)
\(=\left(-2c\right)^3+\left(-2b\right)^3=-8\left(b+c\right)\)
sao nữa nhỉ :v
Xác định các hằng số a,b sao cho
a) x^4 + ax^2 + b chia hết cho x^2 - x+1
b) ax^3 + bx^2 + 5x -50 chia hết cho x^2 + 3x - 10
c) ax^3 + bx-24 chia hết cho (x+1) (x+3)
\(a) x^4 + ax^2 + b \\
= x^4 + 2x^2 + b + ax^2 - 2x^2\\
= (x^2 + 1)^2 - x^2 + x^2(a + b)\\
= (x^2 + x + 1)(x^2 - x + 1) + x^2(a + b) \\
= (x^2 + x + 1)(x^2 - x + 1) + (a + b)(x^2 + x + 1) - (a + b)(x - 1).
\)
Để \(x^4 + ax^2 + b\) chia hết cho \(x^2 + x + 1\) thì số dư bằng 0
\(\Rightarrow\left(a-1\right)\left(b-1\right)=0\\
\Rightarrow a=b=1\)
\(b) ax^3 + bx^2 + 5x - 50\\
= (x^2 + 3x - 10)(cx + d) \\
= ax^3 + bx^2 + 5x - 50\\
= cx^3 + (d + 3c)x^2 + (3d - 10c)x - 10d \\\)
Mà: \(a = c\)
\(b = d + 3c\\
5 = 3d - 10c\\
-50 = -10d\)
Vậy \(a = 1, b = 8\)
\(d)f(x)=ax^3+bx-24\)
Để f(x) chia hết cho (x + 1)(x + 3) thì f(-1)=0 và f(-3) = 0
f(-1)=0 => -a - b - 24 = 0 (*)
f(-3) = 0 => - 27a - 3b - 24 =0 (**)
Từ (*) và (**) ta có hệ phương trình:
\(\left\{{}\begin{matrix}-a-b-24=0\\-27a-3b-24=0\end{matrix}\right.\)
Giải ra ta được a = 2; b = -26
Tìm a,b,c để:
1. (x4+ax3+bx+c) chia hết cho (x-3)3
2. (x5+x4-9x3+ax2+bx+c) chia hết cho (x-2)(x+2)(x+3)
3. (2x4+ax2+bx+c) chia hết cho x-2 và khi chia cho x2-1 thì dư x
Bạn ơi a,b,c thỏa mãn 3 trường hợp luôn hay sao ah?
a)\(x^3+ax+bx+6⋮\left(x-1\right)\)
b)\(x^4+ax^3+bx^2+5x+1⋮\left(x+1\right)^2\)
c)\(^{x^4+3x^3+ax^2+bx+5⋮\left(x-2\right)^2}\)
d)\(x^4+10x^3+ax^2+bx+7⋮\left(x+2\right)^2\)
e)\(x^4+ax^3+5x^2+bx+1⋮x-1\)
Cho a+b+c=0.tính\(\left(a+b+c\right)^3+\left(b+a-c\right)^3+\left(c+a-b\right)^3\)
2. Xác định các hằng số a,b, sao cho
a) x^4 + ax^2 + b chia hết cho x^2 -x +1
b) ax^3 + bx^2 + 5x - 50 chia hết cho x^2 + 3x - 10
c) ax^ 3 + bx - 24 chia hết cho ( x+1) ( x+3)
1)cho f(x)=ax^3+bx^2+cx+d trong đó a,b,c,d thuộc Z và thỏa mãn b=3a+c.Chứng minh rằng f(1).f(-2) là bình phương của một số nguyên.
2)cho đa thức f(x)=ax^2+bx+c với a,b,c là hằng số.Hãy xác định a,b,c biết f(1)=4,f(-1)=8 và a-c=4
3)cho f(x)=ax^3+4x(x^2-1)+8;g(x)=x^3-4x(bx-1)+c-3.Xác định a,b,c để f(x)=g(x).
4)cho f(x)=cx^2+bx+a và g(x)=ax^2+bx+c.
cmr nếu Xo là nghiệm của f(x) thì 1/Xo là nghiệm của g(x)
5)cho đa thức f(x) thỏa mãn xf(x+2)=(x^2-9)f(x).cmr đa thức f(x) có ít nhất 3 nghiệm
6)tính f(2) biết f(x)+(x+1)f(-x)=x+2
TÌM A,B,C ĐỂ:
C, (x^10+ax+b) chia hết cho x^2-1 thì dư 2x+1
D, ( x^5+x^4-9x^3+ax^2+bx+c) chia hết cho (x-2)(x+2)(x+3)
E, (2x^4+ax^2+bx+c) chia hết cho x-2 còn khi chia cho x^2-1 thì dư x
Hộ mk nhé mn😊
C,(x^10+ax+b) chia cho x^2-1 dư 2x+1
=>x^10+ax+b=P(x)*(x^2-1)+2x+1
thay lần lượt x=1 và x=-1 vào cả 2 vế bạn sẽ tìm được a,b
Cố gắng làm nốt nhé
Tìm a, b, c sao cho:
a. \(4x^4+81⋮ax^2+bx+c\)
b. \(x^3+ax^2+bx+c\) chia cho (x+2); (x+1); (x-1) đều dư 8