Đa thức f(x) chia x-2 dư 5 ; chia x-3 dư 7
Tìm số dư của đa thức f(x) khi chia cho (x - 2)(x - 3)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Biết đa thức f(x) chia cho x-3 dư 7, chia cho x-2 dư 5. Tìm đa thức dư trong phép chia đa thức f(x) cho x^2-5x+6
\(x^2-5x+6=\left(x-2\right)\left(x-3\right)\)
Giả sử \(f\left(x\right)\) chia cho \(x^2-5x+6\) được thương là\(Q\left(x\right)\) và dư \(ax+b\)
=> \(f\left(x\right)=Q\left(x\right).\left(x-2\right)\left(x-3\right)+ax+b\)
Có \(f\left(x\right)\) chia cho x - 3 dư 7 ; chia cho x - 2 dư 5
=> \(\left\{{}\begin{matrix}f\left(3\right)=7\\f\left(2\right)=5\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}3a+b=7\\2a+b=5\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
=> \(f\left(x\right)\)chia cho \(x^2-5x+6\) dư 2x + 1
Giả sử đa thức bị chia là m (x)
Gia sử thương là : q( x )
Vì đa thức chia có bậc là 2 , Suy ra thương có bậc là 1
Suy ra , ta có : m( x ) =( x2 - 5x + 6 ) q( x ) = ax + b
Đi tìm X
x2 - 5x + 6 = 0
x2 - 2x - 3x + 6 = 0
x( x - 2) - 3(x - 2) = 0
( x - 2)( x - 3) = 0
Vậy x = 2 hoặc x = 3
Ta có giả thiết f( x ) chia cho x - 2 dư 5 ,từ đó ta được :
f( 2 ) = 5
-> 2a + b = 5 ( 1)
Ta lại có giả thiết f( x ) chia cho x - 3 dư 7 ,Từ đó ta được :
f( 3 ) = 7
-> 3a + b = 7 ( 2)
Từ ( 1 và 2) suy ra : a = 2 ; b = 1
Suy ra : f( x ) = ( x2 - 5x + 6 ) Thay số q( x ) = 2x + 1
Vậy dư là 2x +1
biết đa thức f(x) chia cho đa thức x-2 dư 7 , chia cho đa thức x2+1 dư 3x+5 . Tìm dư trong phép chia đa thức f(x) cho đa thức (x2+1)(x-2)
đơn giản thì trả lời đi , fly color à bạn :)))
a) Cho đa thức f(x) = x^100 + x^99 + ... + x^2 + x + 1 . tìm dư của phép chia đa thức f(x) cho đa thức x^2 -1
b) Tìm đa thức f(x) biết rằng f(x) chia cho x-2 thì dư 2, f(x) chia cho x-3 thì dư 7 , f(x) chia cho x^5 - 5x + 6 thì đc thương là 1 - x^2 và còn dư
Huyền hỏi 2 bài liên tiếp à viết nhanh thế
Các dạng bài này đc giải rất nhiều sao bạn ko coi thế?
Biết rằng một đa thức f(x) chia hết cho (x-a) khi và chỉ khi f(a)=0. Hãy tìm các giá trị của m, n, k sao cho:
a. Đa thức f(x)=x^3+mx^2+nx+2 chia cho x+1 dư 5, chia cho x+2 dư 8.
b. Đa thức f(x)=x^3+mx+n chia cho x+1 thì dư 7, chia cho x-3 thì dư -5.
c. Đa thức f(x)=mx^3+nx^2+k chia hết cho x+2, chia cho x^2-1 thì dư x+5.
a) Ta có f(x) - 5 \(⋮\)x + 1
=> x3 + mx2 + nx + 2 - 5 \(⋮\)x + 1
=> x3 + mx2 + nx - 3 \(⋮\)x + 1
=> x = - 1 là nghiệm đa thức
Khi đó (-1)3 + m(-1)2 + n(-1) - 3 = 0
<=> m - n = 4 (1)
Tương tự ta được f(x) - 8 \(⋮\)x + 2
=> x3 + mx2 + nx - 6 \(⋮\) x + 2
=> x = -2 là nghiệm đa thức
=> (-2)3 + m(-2)2 + n(-2) - 6 = 0
<=> 2m - n = 7 (2)
Từ (1)(2) => HPT \(\left\{{}\begin{matrix}m-n=4\\2m-n=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\n=-1\end{matrix}\right.\)
Vậy đa thức đó là f(x) = x3 + 3x2 - x + 2
b) f(x) - 7 \(⋮\)x + 1
=> x3 + mx + n - 7 \(⋮\) x + 1
=> x = -1 là nghiệm đa thức
=> (-1)3 + m(-1) + n - 7 = 0
<=> -m + n = 8 (1)
Tương tự ta được : x3 + mx + n + 5 \(⋮\)x - 3
=> x = 3 là nghiệm đa thức
=> 33 + 3m + n + 5 = 0
<=> 3m + n = -32 (2)
Từ (1)(2) => HPT : \(\left\{{}\begin{matrix}3m+n=-32\\-m+n=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4m=-40\\-m+n=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-10\\n=-2\end{matrix}\right.\)
Vậy f(x) = x3 - 10x -2
tìm đa thức f(x) biết f(x) chia cho x-2 dư 5;f(x) chia cho x-3 dư 7,f(x) chia cho (x-2)(x-3) được thương là x^2-1 và đa thức dư bậc nhất đối với x
Tìm đa thức f(x) biết F(x) chia cho (x-2) dư 5, chia cho (x-3) dư 7< chia cho (x-2)(x-3) được (x2 -1) và đa thức dư bậc nhất
Tìm đa thức f(x) biết : f(x) chia cho x - 2 dư 5, f(x) chia cho x - 3 dư 7, f(x) chia cho (x-2)(x-3) đc thương là x2-1 và đa thức dư bậc nhất đối vs x
Biết rằng đa thức f(x) chia cho đa thức g(x) = x - 2 được dư là 21, chia cho đa thức h(x) = x ^ 2 + 2 được đa thức dư là 2x−1. Tìm đa thức dư khi chia đa thức f(x) cho đa thức h(x).g(x)
Tìm đa thức F(x) biết F(x) chia x+2 dư 8, F(x) chia x-5 dư 26, F(x) chia \(\left(x+2\right)\left(x+5\right)\) được thương là 2x và còn dư
Chia $(x+2)(x+5)$ hay $(x+2)(x-5)$ vậy bạn?
Tìm đa thức F(x) biết F(x) chia x+2 dư 8, F(x) chia x-5 dư 26, F(x) chia \(\left(x+2\right)\left(x-5\right)\) được thương là 2x và còn dư
Lời giải:
Gọi $ax+b$ là dư của $F(x)$ khi chia cho $(x+2)(x-5)$
Ta có:
$F(x)=2x(x+2)(x-5)+ax+b(*)$
Theo đề thì $F(-2)=8; F(5)=26$
Thay $x=-2$ vào $(*)$ thì:
$F(-2)=(-2)a+b=8(1)$
$F(5)=5a+b=26(2)$
Từ $(1); (2)\Rightarrow a=\frac{18}{7}; b=\frac{92}{7}$
Khi đó:
$F(x)=2x(x+2)(x-5)+\frac{18}{7}x+\frac{92}{7}$
$=2x^3-6x^2-\frac{122x}{7}+\frac{92}{7}$