Cho A = 3+3^2+3^3+3^4+.....+3^25 . Tìm số dư của A khi chia cho 40
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho A= 3+ 3 mũ 2+ 3mũ 3+ .....+ 3 mũ25 . Tìm số dư của A khi chia cho 40
A=3+(32+33+34+35)+...+(322+323+324+325)=3+32(1+3+32+33)+...+322(1+3+32+33)=
=3+32.40+...+322.40=3+40(32+...+322) => A chia 40 dư 3
Bài 3 : Tìm một số tự nhiên khi chia cho 3 dư 1 , khi chia cho 4 dư 2 , khi chia cho 5 dư 3 , khi chia cho 6 dư 4 và chia hết cho 11 .
a. Tìm số nhỏ nhất thỏa mãn tính chất trên .
b. Tìm dạng chung của các số có tính chất trên .
xin chào bạn Lương Thị Loan
chúng mik kết bạn nha
mik xin lỗi mik ko thể kết bạn với bạn được vì mik đã hết lượt rùi
Cho biểu thức A=3-3^2+3^3-3^4+...-3^2010+3^2011
a) Rút gọn A
b) Tìm x thuộc N để 4A-3=81x
c) Tìm số dư khi chia A cho 7
d) Tìm chữ số tận cùng của A
Lời giải:
$A=3-3^2+3^3-3^4+....-3^{2010}+3^{2011}$
$3A=3^2-3^3+3^4-3^5+...-3^{2011}+3^{2012}$
$\Rightarrow A+3A=3^{2012}+3$
$\Rightarrow 4A=3^{2012}+3$
$\Rightarrow A=\frac{3^{2012}+3}{4}$
b.
Từ phần a suy ra $4A-3=3^{2012}$
Do đó để $4A-3=81^x$ thì $3^{2012}=81^x$
$\Rightarrow 81^{503}=81^x$
$\Rightarrow x=503$
c.
$A=3+(-3^2+3^3-3^4)+(3^5-3^6+3^7)+(-3^8+3^9-3^{10})+...+(3^{2009}-3^{2010}+3^{2011})$
$=3+3^2(-1+3-3^2)+3^5(1-3+3^2)+3^8(-1+3-3^2)+...+3^{2009}(1-3+3^2)$
$=3+3^2(-7)+3^5.7+3^8(-7)+...+3^{2009}(-7)$
$=3+7(-3^2+3^5-3^8+....+3^{2009})$
$\Rightarrow A$ chia 7 dư 3.
d.
$4A=3^{2012}+3$
Có: $3^2\equiv -1\pmod {10}$
$\Rightarrow 3^{2012}=(3^2)^{1006}\equiv 1\pmod {10}$
$\Rightarrow 3^{2012}+3\equiv 4\pmod {10}$
$\Rightarrow 4A$ có tận cùng là 4
$\Rightarrow A$ có tận cùng là 1.
a)tìm số tự nhiên lớn nhất có ba chữ số sao cho khi chia nó cho 2 ,cho 3 ,cho 4 ,cho 5 ,cho 6 ta được các số dư theo thứ tự là 1,2,3,4,5
b)tìm dạng chung của các số tự nhiên a chia cho 4 thì dư 3, chia cho 5 thì dư 4 ,chia cho 6 thì dư 5 ,chia hết cho 13
a)tìm số tự nhiên lớn nhất có ba chữ số sao cho khi chia nó cho 2 ,cho 3 ,cho 4 ,cho 5 ,cho 6 ta được các số dư theo thứ tự là 1,2,3,4,5
b)tìm dạng chung của các số tự nhiên a chia cho 4 thì dư 3, chia cho 5 thì dư 4 ,chia cho 6 thì dư 5 ,chia hết cho 13
Gọi số cần tìm là abc. Ta có abc+1 chia hết cho 2,3,4,5,6.
2=2
3=3
4=2^2
5=5
6=2.3. BCNN(2,3,4,5,6)=2^2.3.5=60. =>abcEB(60)=0,60,...
Vì abc+1 lớn nhất nên abc+1=960 =>abc=959.
cho A = 1+ 3+3^2+3^3+...+3^120.Tìm số dư khi chia A cho 40
A=(1+3+32+33)+(34+35+36+36)+...+(3117+3118+3119+3120)
A=(1+3+32+33)+34.(1+3+32+33)+...+3117.(1+3+32+33)
A=40+34.40+37.40+...+3117.40
A=40.(1+34+37+...+3117) : 40 =1+34+37+..+3117 và dư 0
a)tìm số tự nhiên lớn nhất có ba chữ số sao cho khi chia nó cho 2 ,cho 3 ,cho 4 ,cho 5 ,cho 6 ta được các số dư theo thứ tự là 1,2,3,4,5
b)tìm dạng chung của các số tự nhiên a chia cho 4 thì dư 3, chia cho 5 thì dư 4 ,chia cho 6 thì dư 5 ,chia hết cho 13
gọi cần tìm là n (100 <n<999) ta có
n-1 chia hết 2 (n-1)+2 chia hết 2 n+1(vì 2-1=1) chia hết 2
n-2 chia hết 3=> (n-2)+3 chia hết 3=> n+1(vì 3-2=1)chia hết 3
n-3 chia hết 4 (n-3)+4 chia hết 4 n+1 chia hết 4
n-4 chia hết 5 (n-4)+5 chia hét 5 n+1 chia hết 5
n-5 chia hết 6 (n-5)+6 chia hết 6 n+1 chia hết 6
=>n+1 thuộc BC(2,3,4,5,6)
2=2, 3=3, 4=22, 5=5,6=2.3 => BCNN(2,3,4,5,6)=22.3.5=60
B(2,3,4,5,6)=BC(60)={0,60,120,180,...,960,1020,...}
n=-1,59,119,...,959,1019,...
vì 100<n<999 nên n=959
Tìm hai số tự nhiên biết tổng của chúng là 2016, số lớn chia cho số bé được thương là 64 số dư là 1.
Tìm hai số tự nhiên biết hiệu của chúng là 158, số lớn chia cho số bé được thương là 2 số dư là 60.
Tìm số tự nhiên a biết a chia 4 dư 3, chia 5 dư 4, chia 6 dư 5.
nhieu qua h cho mik da mik moi tra loi
Tìm hai số tự nhiên biết tổng của chúng là 2016, số lớn chia cho số bé được thương là 64 số dư là 1.
Tìm hai số tự nhiên biết hiệu của chúng là 158, số lớn chia cho số bé được thương là 2 số dư là 60.
Tìm số tự nhiên a biết a chia 4 dư 3, chia 5 dư 4, chia 6 dư 5.