Những câu hỏi liên quan
PC
Xem chi tiết
LL
Xem chi tiết
PB
Xem chi tiết
CT
17 tháng 6 2017 lúc 2:17

A(x) chia cho B(x) có số dư bằng 2. Vậy m – 5 = 2 ⇒ m = 7.

Bình luận (0)
MP
Xem chi tiết
MP
8 tháng 1 2018 lúc 19:50

Các pạn giải hộ mk nha . Sáng mai mk phải nộp bài rùi huhu

Bình luận (0)
TL
10 tháng 1 2018 lúc 18:22

Phép nhân và phép chia các đa thức

Bình luận (0)
HT
Xem chi tiết
AH
18 tháng 8 2024 lúc 18:21

Lời giải:

Theo định lý Bê-du về phép chia đa thức:

Số dư của $A(x)$ khi chia cho $x+1$ là:

$A(-1)=(-1)^3+a(-1)^2+b(-1)+2=-1+a-b+2=5$

$\Rightarrow a-b=4(1)$

Số dư của $A(x)$ khi chia cho $x+2$ là:
$A(-2)=(-2)^3+a(-2)^2+b(-2)+2=-8+4a-2b+2=8$

$\RIghtarrow 4a-2b=14$

$\Rightarrow 2a-b=7(2)$

Từ $(1); (2)\Rightarrow a=3; b=-1$

Bình luận (0)
NQ
Xem chi tiết
AN
31 tháng 12 2016 lúc 13:59

Dùng sơ đồ hoocno mà giải đi bạn

Bình luận (0)
TD
1 tháng 1 2017 lúc 20:57

(Câu trả lời của alibaba nguyễn đúng mà hài!!!)

Sơ đồ Horner hoạt động như sau:

 10abc
313a+93a+b+279a+3b+c+27
316a+276a+b+10827a+6b+c+351
3...............
Kẻ bảng, trên dòng đầu tiên ghi các hệ số của đa thức đầu tiên, ở đây là \(1,0,a,b,c\).Theo định lí Bezout thì đa thức sẽ có nghiệm bội 3 là số 3, do đó chừa một cột bên tay trái ghi nghiệm (là số 3).Hạ hệ số (là 1) xuống, thực hiện quy tắc "nhân ngang cộng chéo" (nhân từ nghiệm qua rồi cộng chéo lên).VD: 3 nhân 1 cộng 0 là 3, viết 3. 3 nhân 3 cộng a là a+9, viết a+9. 3 nhân (a+9) cộng b là 3a+b+27, viết 3a+b+27...Để 3 là nghiệm của đa thức thì hệ số cuối cùng là 0, tức là \(9a+3b+c+27=0\).Tự làm tiếp, ra thêm 2 cái phương trình nữa...
Bình luận (0)
BV
24 tháng 7 2018 lúc 9:55

Không hiểu gì hết

Bình luận (0)
H24
Xem chi tiết
NM
14 tháng 12 2021 lúc 21:06

\(a,\Leftrightarrow4x^3-2x^2+a=\left(2x-3\right).a\left(x\right)\)

Thay \(x=\dfrac{3}{2}\Leftrightarrow4.\dfrac{27}{8}-2.\dfrac{9}{4}+a=0\)

\(\Leftrightarrow\dfrac{27}{2}-\dfrac{9}{2}+a=0\\ \Leftrightarrow a=-9\)

\(b,\Leftrightarrow3x^3+2x^2+x+a=\left(x+1\right).b\left(x\right)+2\)

Thay \(x=-1\Leftrightarrow-3+2-1+a=2\Leftrightarrow a=4\)

Bình luận (1)
HH
Xem chi tiết
H24
Xem chi tiết
NM
3 tháng 1 2022 lúc 22:34

Bài 1:

Đặt \(a=\sqrt[7]{\dfrac{3}{5}};b=\sqrt[7]{\dfrac{5}{3}}\Rightarrow\left\{{}\begin{matrix}a+b=x\\ab=1\end{matrix}\right.\)

Ta có \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=\left(a+b\right)\left[\left(a+b\right)^2-3ab\right]\)

\(\Rightarrow a^3+b^3=x\left(x^2-3\right)=x^3-3x\)

Ta có \(a^4+b^4=\left(a^2+b^2\right)^2-2\left(ab\right)^2=\left[\left(a+b\right)^2-2ab\right]^2-2\left(ab\right)^2\)

\(\Rightarrow a^4+b^4=\left(x^2-2\right)^2-2=x^4-4x^2+2\)

\(\Rightarrow\left(a^3+b^3\right)\left(a^4+b^4\right)=\left(x^3-3x\right)\left(x^4-4x^2+2\right)\\ =x^7-3x^5-4x^5+12x^3+2x^3-6x\\ =x^7-7x^5+14x^3-6x\)

Lại có \(\left(a^4+b^4\right)\left(a^3+b^3\right)=a^7+b^7+\left(ab\right)^3\left(a+b\right)=\dfrac{3}{5}+\dfrac{5}{3}+x=\dfrac{34}{15}+x\)

\(\Rightarrow x^7-7x^5+14x^3-6x=\dfrac{34}{15}+x\\ \Rightarrow15x^7-105x^5+210x^3-105x-34=0\left(1\right)\)

Vậy (1) nhận \(x=\sqrt[7]{\dfrac{3}{5}}+\sqrt[7]{\dfrac{5}{3}}\) làm nghiệm

Bình luận (0)
NM
3 tháng 1 2022 lúc 22:40

Bài 2 đa thức bậc 2 chia đa thức bậc 2 dư đa thức bậc 1 ??

Bình luận (1)
MH
3 tháng 1 2022 lúc 22:42

Áp định lí Bezu (Bài 2)

Bình luận (0)