Những câu hỏi liên quan
CN
Xem chi tiết
ID
9 tháng 12 2017 lúc 10:31

mik lp6

nên k bít

xin lỗi ha

Bình luận (0)
DH
6 tháng 2 2018 lúc 17:04

\(PT\Leftrightarrow\left(x^2-4xy+4y^2\right)+4x-8y+4+y^2-16=0\)

\(\Leftrightarrow\left(x-2y\right)^2+4\left(x-2y\right)+4+y^2=16\)

\(\Leftrightarrow\left(x-2y+2\right)^2+y^2=16\)

Vì \(\left(x+2y+2\right)^2+y^2\) là tổng hai số chính phương 

nên \(\left(\left(x+2y+2\right)^2;y^2\right)\in\left\{0;16\right\}\)xét 2 TH là ra

Bình luận (0)
KG
Xem chi tiết
LP
29 tháng 8 2023 lúc 13:59

\(x^2-4xy+5y^2-16=0\)

\(\Leftrightarrow\left(x-2y\right)^2+y^2=16\)

Ta xét các TH:

TH1: \(\left\{{}\begin{matrix}x-2y=0\\y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=4\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}x-2y=4\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\)

Vậy ta tìm được cặp số (x; y) là \(\left(8;4\right);\left(4;0\right)\)

Bình luận (0)
OO
Xem chi tiết
KA
Xem chi tiết
H24
26 tháng 3 2018 lúc 12:41

Ta  có : \(x^2-4xy+5y^2-16=0\)

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2-16\right)=0\)

\(\Leftrightarrow\left(x-2y\right)^2+\left(y-4\right)^2=0\)

Mà \(\left(x-2y\right)^2\ge0\forall x:y\)

       \(\left(y-4\right)^2\ge0\forall y\)

Dấu  " = " xảy ra khi :

\(\orbr{\begin{cases}x-2y=0\\y-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2y\\y=4\end{cases}}}\Leftrightarrow\orbr{\begin{cases}x=8\\y=4\end{cases}}\)

Vậy \(\left(x;y\right)=\left(8;4\right)\)

Bình luận (0)
H24
Xem chi tiết
H24
17 tháng 6 2021 lúc 17:50

PT <=> \(x^2-4x\left(y-1\right)+5y^2-8y-12=0\)

Xét \(\Delta'=\left[-2\left(y-1\right)\right]^2-1.\left(5y^2-8y-12\right)\)

\(4\left(y^2-2y+1\right)-5y^2+8y+12\)

\(-y^2+16\)

Để PT có nghiệm <=> \(\Delta'\ge0< =>-y^2+16\ge0\)

<=> \(y^2\le16\) <=> \(-4\le y\le4\)

Mà y nguyên 

<=> \(y\in\left\{-4;-3;-2;-1;0;1;2;3;4\right\}\)

Đến đây bn thay y vào PT để tìm x nhé

Bình luận (2)
TT
Xem chi tiết
NN
6 tháng 2 2018 lúc 18:35

Ta có:

\(x^2+5y^2-4xy+4x-8y-12=0\)

\(\Leftrightarrow x^2-4xy+4x+4y^2-8y+4+y^2-16=0\)

\(\Leftrightarrow\left[x^2-\left(4xy-4x\right)+\left(4y^2-8y+4\right)\right]+y^2=16\)

\(\Leftrightarrow\left[x^2-4x\left(y-1\right)+4\left(y-1\right)^2\right]+y^2=16\)

\(\Leftrightarrow\left(x-2y+2\right)^2+y^2=16\)

Do \(x,y\in Z\) => \(\left(x-2y+2\right)^2\)\(y^2\) là 2 số chính phương.

Mà do tổng 2 số chính phương này là 16 => Một trong hai số chính phương là 16 và số còn lại là 0.

Ta có bảng sau:

Violympic toán 9

Vậy các nghiệm nguyên của phương trình là:

\(\left(x;y\right)=\left(6;4\right);\left(-10;-4\right);\left(2;0\right);\left(-6;0\right)\)

Bình luận (0)
HP
Xem chi tiết
LN
22 tháng 1 2017 lúc 11:47

Với câu a)bạn nhân cả 2 vế cho 12 rồi ép vào dạng bình phương 3 số

Câu b)bạn nhân cho 8 mỗi vế rồi ép vào bình phương 3 số 

Bình luận (0)
HP
22 tháng 1 2017 lúc 20:00

giải zõ hộ

Bình luận (0)
NT
Xem chi tiết
NH
Xem chi tiết