Những câu hỏi liên quan
NV
Xem chi tiết
XO
29 tháng 10 2020 lúc 5:00

Đặt A = 35371 + 572016 + 922017

= 31342.4 . 33 + 574.504 + 924.504.92

= (34)1342.(..7) + (574)504 + (924)504.(...2)

= (...1)1342.(...7) + (...1)504 + (...6)504.(...2)

= (...1).(...7) + (...1) + (...6).(...2)

= (...7) + (...1) + (...2)

= (...0) \(⋮\)10 

Vậy \(A⋮\)10 (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
LL
Xem chi tiết
TP
26 tháng 10 2018 lúc 17:54

a) 

\(5n+3⋮n+2\)

\(5n+10-7⋮n+2\)

\(5\left(n+2\right)-7⋮n+2\)

mà \(5\left(n+2\right)⋮n+2\Rightarrow7⋮n+2\)

\(\Rightarrow n+2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

Ta có bảng :

n+21-17-7
n-1-35-9

Vậy x = { -9; -3; -1; 5 }

Bình luận (0)
HN
29 tháng 10 2018 lúc 10:37

Đề ra là số tự nhiên mà không phải số nguyên âm làm đúng rồi bỏ nguyên âm đi là ok

Bình luận (0)
NT
Xem chi tiết
NK
14 tháng 11 2016 lúc 19:35

số trên sẽ có tổng các chữ số bằng 1

=>số 102017+2016 ko chia hết cho 3

Bình luận (0)
TM
14 tháng 11 2016 lúc 19:38

10^2017 có tổng các chữ số bằng 1

2016 có tổng các chữ số bằng 9

Mà 1+9=10 không chia hết cho 3 nên 10^2017+ không chia hết cho 3

Bình luận (0)
PL
2 tháng 2 2018 lúc 19:27

ko chia hetcho 3

Bình luận (0)
SL
Xem chi tiết
NA
16 tháng 10 2016 lúc 16:31

sử dụng đồng dư thức hoặc hằng đẳng thức

Bình luận (0)
PK
Xem chi tiết
 .
6 tháng 9 2019 lúc 19:23

\(2016^3-2016=2016.\left(2016^2-1\right)\)

\(=2016.\left(2016-1\right).\left(2016+1\right)\)

\(=2017.2016.2015⋮2017\) ( đpcm )

Bình luận (0)
LT
6 tháng 9 2019 lúc 19:35

20163-2016=2016(20162-1)=2016.(2016-1)(2016+1)=2015.2016.2017 chia hết cho 2017

Bình luận (0)

\(2016^3-2016\)

\(=2016\left(2016^2-1\right)\)

\(=2016.\left(2016-1\right)\left(2016+1\right)\)

\(=2015.2016.2017⋮2017\)

\(\Rightarrowđpcm\)

Bình luận (0)
HH
Xem chi tiết
NP
19 tháng 10 2016 lúc 22:54

ngu người bài này mà không biết giải

Bình luận (0)
LT
29 tháng 10 2019 lúc 20:57

Bạn Nguyễn Minh Phương kia tưởng mik học giỏi lắm à mà chê người khác , chỉ hok giỏi hơn vài người thôi bỏ tính đó đi 

Bình luận (0)
 Khách vãng lai đã xóa
VN
Xem chi tiết
NQ
3 tháng 1 2018 lúc 21:24

a, 10^2017+8 = 100....000+8 (2017 chữ số 0) = 100....008 (2016 chữ số 8) chia hết cho 8

Có : tổng các chữ số của 10^2017+8 = 1+0+0+....+0+0+8 = 9 chia hết cho 9 => 10^2017+8 chia hết cho 9

=> 10^2017+8 chia hết cho 72 ( vì 8 và 9 là 2 số nguyên tố cùng nhau )

=> ĐPCM

Tk mk nha

Bình luận (0)
SL
Xem chi tiết
BV
17 tháng 10 2016 lúc 8:33

Cô sẽ áp dụng đồng dư để chứng minh, Tuấn có thể trình bày cách của em để mọi người tìm hiểu.
\(Q=\frac{\left(2016+1\right)2016}{2}=2017.3^2.2^4.7\).
ÁP dụng định lý Fermat nhỏ: \(a^{p-1}=1\left(modp\right)\). Nhận xét rằng 2017 là số nguyên tố vì vậy
\(\left(n,2017\right)=1,\)với mọi n  = 1, 2, ..., 2016.
Do đó \(n^{2016}=1\left(mod2017\right),n=1,....,2016\).
Vì vậy: \(n^{2017}=n\left(mod2017\right),n=1,2,...,2017\).
Suy ra: \(1^{2017}+2^{2017}+.....+2016^{2017}=1+2+...+2016\left(mod2017\right)\)
                                                                        \(=2017.1008\left(mod2017\right)\)\(=0\left(mod2017\right)\)
Vì vậy \(1^{2016}+2^{2016}+....+2016^{2016}=0\left(mod2017\right)\).
Ta sẽ chứng minh P chia hết cho \(2^4\) .
Nhận xét rằng \(n=2k\left(k\in N\right),n=\left(2k\right)^{2017}=0\left(mod2^4\right)\).
Xét những hạng tử không chia hết cho 2 là 1, 3, 5, ....., 2015.
Áp dụng định lý Euler : \(a^{\varphi\left(n\right)}=1\left(modn\right),\left(a,n\right)=1\).
Do n = 1, 3, 5, ...., 2015 thì \(\left(n,2^4\right)=1\)( Ước chung lớn nhất bằng 1) , \(\varphi\left(16\right)=8\) nên :
\(n^{2017}=n^{8.252+1}=n\left(n^8\right)^{252}=n\left(mod2^4\right)\)( Do \(n^8=1\left(mod2^4\right)\).
Vì vậy : \(1^{2017}+3^{2017}+...+2015^{2017}=1+3+...2015\left(mod2^4\right)\)
                                                                       \(=2016.504\left(mod2^4\right)\)
                                                                        \(=0\left(mod2^4\right)\).
Vì vậy \(1^{2017}+2^{2017}+.....+2016^{2017}=0\left(mod2^4\right)\)
Những số còn lại là \(3^2,7\)ta chứng minh tương tự.
 

Bình luận (0)
H24
16 tháng 10 2016 lúc 22:25

\(a^n+b^n\) chia hết cho a+b với n lẻ 
áp dụng cái trên là đc nhé bạn 

Bình luận (0)
ND
17 tháng 10 2016 lúc 11:19

mik mới học lớp 7

Bình luận (0)
PH
Xem chi tiết
ST
8 tháng 10 2016 lúc 21:20

A=7+72+73+...+72016

=(7+72)+(73+74)+...+(72015+72016)

=7.(1+7)+73.(1+8)+...+72015.(1+7)

=7.8+73.8+...+72015.8

=8.(7+73+...+72015) chia hết cho 8 (đpcm)

A=7+72+73+...+72016

=(7+72+73)+...+(72014+72015+72016)

=7.(1+7+72)+...+72014.(1+7+72)

=7.57+...+72014.57

=57.(7+...+72014) chia hết cho 57 (đpcm)

Bình luận (0)