Chứng tỏ : 1+3+5+...+(2n+1) là một số chính phương
Số chính phương là số bằng bình phương của một số tự nhiên (ví dụ: 0; 1; 4; 6; 16;...). Chứng tỏ rằng 1 + 3 + 5 +...+(2n - 3) + (2n - 1) là một số chính phương.
Số số hạng của tổng đã cho là :
[(2n - 1) - 1] : 2 + 1 = (2n - 2)) : 2 + 1
= 2(n - 1) : 2 + 1
= n - 1 + 1
= n
Trung bình ộng của tổng là :
[(2n - 1) + 1] : 2 = (2n - 1 + 1) : 2
= 2n : 2
= n
Khi đó ; 1 + 3 + 5 = .... + (2n - 3) + (2n - 1) = n.n = n2
Vậy 1 + 3 + 5 = .... + (2n - 3) + (2n - 1) là số chính phương
Chứng tỏ rằng A = 1 + 3 + 5 + 7 +...+ (2n - 1) (n\(\in\)N) là một số chính phương.
Ta có: \(A=1+3+5+7+...+\left(2n-1\right)\)
\(A=\left(\frac{\left(2n-1\right)-1}{2}+1\right)\left(2n-1+1\right):2\)
\(A=\left(\frac{2n-2}{2}+1\right).\frac{2n}{2}\)
\(A=\left(\frac{2\left(n-1\right)}{2}+1\right).n\)
\(A=\left(n-1+1\right).n\)
\(A=n.n\)
\(A=n^2\left(đpcm\right)\)
hok tốt!!
Chứng tỏ M = 1 + 3 + 5 + ... + ( 2n - 1 ) ( với n thuộc N ) là 1 số chính phương
số các số hạng là:
(2n-1-1):2+1=n(số)
tổng A là:
(2n-1+1)n:2=n.n=n2
=>đpcm
Số số hạng là :
(2n + 1 - 1) : 2 + 1 = n + 1 (số hạng)
Do đó \(M=\frac{\left(2n+1+1\right).\left(n+1\right)}{2}=\frac{\left(2n+2\right).\left(n+1\right)}{2}=\frac{2.\left(n+1\right).\left(n+1\right)}{2}=\left(n+1\right).\left(n+1\right)=\left(n+1\right)^2\)
Vậy M là số chính phương
chứng tỏ biểu thức sau là số chính phương
1+3+5 +...+ (2n-1)
Chứng tỏ rằng A là một số chính phương biết rằng A 1 3 5 7... 2n 1 với n thuộc N cho cách làm nữa nha
\(A_n=1+3+5+7+...+2n-1\)
\(A_1=1=1^2\)
\(A_2=1+3=2^2\)
Ta sẽ chứng minh \(A_n=n^2\).(1)
(1) đúng với \(n=1\).
Giả sử (1) đúng với \(n=k\ge1\)tức là \(A_k=k^2\).
Ta sẽ chứng minh (1) đúng với \(n=k+1\) tức là \(A_{k+1}=\left(k+1\right)^2\)
Thật vậy, ta có: \(A_{k+1}=1+3+5+...+2k-1+2\left(k+1\right)-1\)
\(=A_k+2\left(k+1\right)-1=k^2+2k+1=k^2+k+k+1=\left(k+1\right)^2\)
Ta có đpcm.
Vậy \(A_n=n^2\)là số chính phương.
Chứng tỏ : 1 + 3 + 5 + ... + ( 2n - 1 ) ( với n thuộc N ) là 1 số chính phương
a) Cho A = 1+3+5+7+...............+(2n+1)
Chứng tỏ rằng A là số chính phương
b) Cho B = 2+4+6+8+...............+2n
Số B có thế là số chính phương hay không ? Vì sao?
a) Số số hàng trong tổng A là:
\(\frac{\left(2n+1-1\right)}{2}+1=n+1\)
\(A=\frac{\left(2n+1+1\right)\left(n+1\right)}{2}=\left(n+1\right)\left(n+1\right)=\left(n+1\right)^2\)
Do n là số tự nhiên nên A là số chính phương.
b) Số số hạng trong tổng B là:
\(\frac{2n-2}{2}+1=n\)
\(B=\frac{\left(2n+2\right).n}{2}=\left(n+1\right)n\)
Vậy số B không thể là số chính phương.
chứng tỏ a là số chính phương
a=1+3+5+.....+(2n-1)
ta có
Na=(2n-1-1)/2 +1=n
vậy a=(2n-1+1).n/2=n^2
vậy a là số chính phương
Nguồn:Na là số số hạng của a.
ở đây mình use ct
S=(số đầu+số cuối).số số hạng /2
chứng tỏ rằng số sau là số chính phương: A=1+3+5+...+(2n-1) với n thuộc N
Sô các số là : (2n-1) :2 +1 = n-1
Ta có : (2n -1 +1 ) . (n -1 ) :2 = ( 2n -2 ) . ( n -1 ) :2
= 2 ( n -1 ) .( n-1)
= ( n-1 ) . ( n - 1) = ( n -1 ) 2
Các bạn nên để ý đề , trong câu tương tự là "+" còn đây là " - "
A có số số hạng là:
(2n+1-1):2+1=n+1(số)
=>\(\frac{\left(2n+1+1\right).\left(n+1\right)}{2}=\frac{\left(2n+2\right).\left(n+1\right)}{2}=\frac{2\left(n+1\right)\left(n+1\right)}{2}\)
\(=\left(n+1\right).\left(n+1\right)=\left(n+1\right)^2\)
=>A là số chính phương