Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
H24
Xem chi tiết
NT
17 tháng 6 2021 lúc 9:31

a, \(P=\left(\frac{\sqrt{x}}{x\sqrt{x}-1}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)

\(=\left(\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right):\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)

\(=\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\frac{x+\sqrt{x}+1}{\sqrt{x}+1}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

b, Vì x > 1, g/s : Thay x = 4 vào P ta được : 

\(\frac{\sqrt{4}+1}{\sqrt{4}-1}=\frac{3}{1}=3\)

Thay x = 4 vào căn P ta được : \(\sqrt{\frac{\sqrt{4}+1}{\sqrt{4}-1}}=\sqrt{3}\)

mà \(3>\sqrt{3}\Rightarrow P>\sqrt{P}\)với x > 1 

Bình luận (0)
 Khách vãng lai đã xóa
MD
Xem chi tiết
NN
Xem chi tiết
KK
20 tháng 9 2020 lúc 21:43

ĐK: \(x\ge0;x\ne1\)

a) \(P=\frac{\sqrt{x}+x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)

\(P=\frac{x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\frac{x+\sqrt{x}+1}{\sqrt{x}+1}\)

\(P=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}.\frac{1}{\sqrt{x}+1}\)

\(P=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

Để  \(P=\sqrt{x}\Leftrightarrow\frac{\sqrt{x}+1}{\sqrt{x}-1}=\sqrt{x}\Leftrightarrow\sqrt{x}+1=\sqrt{x}\left(\sqrt{x}-1\right)\)\(\sqrt{x}+1\Leftrightarrow x-\sqrt{x}\Leftrightarrow-x+2\sqrt{x}+1=0\)

\(\Leftrightarrow-\left(x-2\sqrt{x}+1\right)+2=0\Leftrightarrow\left(\sqrt{x}-1\right)^2=2\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-1=\sqrt{2}\\\sqrt{x}-1=-\sqrt{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=\sqrt{2}+1\\\sqrt{x}=-\sqrt{2}+1\end{cases}\Leftrightarrow}x=3\pm2\sqrt{2}}\)

b) Với \(x>1\)thì \(P>0\)

Ta dễ thấy \(P=\frac{\sqrt{x}+1}{\sqrt{x}-1}>1\)

Ta có: \(P>0;P>1\)\(\Rightarrow P\left(P-1\right)>0\Leftrightarrow P^2>P\Leftrightarrow P>\sqrt{P}\)

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
ND
Xem chi tiết
KP
Xem chi tiết
MN
8 tháng 7 2020 lúc 19:41

a)  \(ĐKXĐ:\hept{\begin{cases}x>0\\x\ne9\end{cases}}\)

\(C=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{9-x}\right):\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\)

\(\Leftrightarrow C=\frac{\sqrt{x}\left(3-\sqrt{x}\right)+x+9}{9-x}:\frac{3\sqrt{x}+1-\sqrt{x}+3}{x-3\sqrt{x}}\)

\(\Leftrightarrow C=\frac{3\sqrt{x}+9}{9-x}:\frac{2\sqrt{x}+4}{x-3\sqrt{x}}\)

\(\Leftrightarrow C=\frac{3}{3-\sqrt{x}}\cdot\frac{x-3\sqrt{x}}{2\sqrt{x}+4}\)

\(\Leftrightarrow C=\frac{-3}{2\sqrt{x}+4}\)

b) Để \(-\frac{3}{2\sqrt{x}+4}< -1\)

\(\Leftrightarrow\frac{1+2\sqrt{x}}{2\sqrt{x}+4}< 0\)

Vì \(\hept{\begin{cases}1+2\sqrt{x}>0\\2\sqrt{x}+4>0\end{cases}\Leftrightarrow C>0}\)

Vậy để C <-1 <=> \(x\in\varnothing\)

c) \(A=\frac{1}{\sqrt{3}-\sqrt{2}}=\sqrt{3}+\sqrt{2}\)

\(\Leftrightarrow A^2=3+2+2\sqrt{5}=5+2\sqrt{5}\)

   \(B=\sqrt{5}+1\)

\(\Leftrightarrow B^2=5+1+2\sqrt{5}=6+2\sqrt{5}\)

Vì \(5+2\sqrt{5}< 6+2\sqrt{5}\)

\(\Leftrightarrow A^2< B^2\)

\(\Leftrightarrow A< B\)

Vậy \(\frac{1}{\sqrt{3}-\sqrt{2}}< \sqrt{5}+1\)

Bình luận (0)
 Khách vãng lai đã xóa
MM
Xem chi tiết
NH
Xem chi tiết
HH
6 tháng 7 2017 lúc 9:47

a. ĐK \(x\ge0\)và \(x\ne1\)

A =\(\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}}{\sqrt{x}+1}+\frac{\sqrt{x}}{1-\sqrt{x}}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{1-\sqrt{x}}{\sqrt{x}+1}\right)\)

\(=\frac{\left(\sqrt{x}+1\right)^2+\sqrt{x}\left(\sqrt{x}-1\right)-\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}:\frac{\cdot\left(\sqrt{x}+1\right)^2+\left(\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{x+2\sqrt{x}+1+x-\sqrt{x}-x-\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{x+2\sqrt{x}+1+\sqrt{x}-x-1+\sqrt{x}}\)

\(=\frac{x+1}{4\sqrt{x}}\)

b. Thay \(x=\frac{2-\sqrt{3}}{2}\Rightarrow A=\frac{\frac{2-\sqrt{3}}{2}+1}{4\sqrt{\frac{2-\sqrt{3}}{2}}}=\frac{4-\sqrt{3}}{4\left(\sqrt{3}-1\right)}=\frac{4-\sqrt{3}}{4-4\sqrt{3}}=-\frac{1+3\sqrt{3}}{8}\)

c . Ta có \(A-\frac{1}{2}=\frac{x+1}{4\sqrt{x}}-\frac{1}{2}=\frac{x-2\sqrt{x}+1}{4\sqrt{x}}=\frac{\left(\sqrt{x}-1\right)^2}{4\sqrt{x}}>0\)với \(\forall x>0\)và \(x\ne1\)

Vậy A >1/2

Bình luận (0)
gh
Xem chi tiết
KN
30 tháng 10 2020 lúc 20:54

1. \(VT=\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)

\(=\sqrt{2^2+2.2.\sqrt{3}+\left(\sqrt{3}\right)^2}-\sqrt{2^2-2.2.\sqrt{3}+\left(\sqrt{3}\right)^2}\)

\(=\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=2+\sqrt{3}-2+\sqrt{3}=VP\)

Bình luận (0)
 Khách vãng lai đã xóa
LD
30 tháng 10 2020 lúc 20:55

Bài 1.

Ta có : \(\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)

\(=\sqrt{3+4\sqrt{3}+4}-\sqrt{3-4\sqrt{3}+4}\)

\(=\sqrt{\left(\sqrt{3}+2\right)^2}-\sqrt{\left(\sqrt{3}-2\right)^2}\)

\(=\left|\sqrt{3}+2\right|-\left|\sqrt{3}-2\right|\)

\(=\sqrt{3}+2-\left(2-\sqrt{3}\right)\)

\(=\sqrt{3}+2-2+\sqrt{3}=2\sqrt{3}\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
LD
30 tháng 10 2020 lúc 21:04

Bài 2.

\(P=\left(\frac{1}{x-\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}-1}\right)\div\left(\frac{2}{x-1}+\frac{1}{\sqrt{x}+1}\right)\)

ĐKXĐ : \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)

\(=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\div\left(\frac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)

\(=\frac{x+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{x+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\times\frac{\sqrt{x}-1}{1}=\frac{x+1}{\sqrt{x}}\)

Xét P - 2 ta có :

\(P-2=\frac{x+1}{\sqrt{x}}-2=\frac{x+1}{\sqrt{x}}-\frac{2\sqrt{x}}{\sqrt{x}}=\frac{x-2\sqrt{x}+1}{\sqrt{x}}=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)

Với \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\Rightarrow\hept{\begin{cases}\left(\sqrt{x}-1\right)^2>0\\\sqrt{x}>0\end{cases}}\Rightarrow\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}>0\)

=> \(P-2>0\)

=> \(P>2\)

Bình luận (0)
 Khách vãng lai đã xóa