Cho \(x^2=a^2+b^2+ab\) và \(a+b=c\). Chứng minh\(2x^4=a^4+b^4+c^4\)
cho \(x^2=a^2+b^2+ab\) và a+b=c chứng minh \(2x^4=a^4+b^4+c^4\)
\(x^2=a^2+b^2+ab\)
\(\Leftrightarrow x^4=a^4+b^4+a^2b^2+2a^2b^2+2ab^3+2a^3b\)
\(\Leftrightarrow2x^4=2a^4+2b^4+6a^2b^2+4ab^3+4a^3b\)
\(\Leftrightarrow2x^4=a^4+b^4+\left(a^2\right)^2+\left(b^2\right)^2+\left(2ab\right)^2+2a^2b^2+2b^2.2ab+2.2ab.a^2\)
\(\Leftrightarrow2x^4=a^4+b^4+\left(a^2+b^2+2ab\right)^2\)
\(\Leftrightarrow2x^4=a^4+b^4+\left[\left(a+b\right)^2\right]^2\)
\(\Leftrightarrow2x^4=a^4+b^4+c^4\left(đpcm\right)\)
Cho x2=a2+b2+ab và a+b=c Chứng minh rằng : 2x4=a4+b4+c4
Cho \(x^2=a^2+b^2+ab\) và c=a+b
chứng minh rằng \(2x^4=a^4+b^4+c^4\)
Ta có :
\(x^2=a^2+b^2+ab\)
\(\Leftrightarrow x^4=a^4+3a^2b^2+2a^3b+2ab^3+b^4\)
\(\Leftrightarrow2x^4=2a^4+2b^4+6a^2b^2+4a^3b+4ab^3\)
\(\Leftrightarrow2x^4=a^4+b^4+\left[\left(a^2+2ab+b^2\right)^2\right]\)
\(\Leftrightarrow2x^4=a^4+b^4+\left[\left(a+b\right)^2\right]^2\)
\(\Leftrightarrow2x^4=a^4+b^4+c^4\left(đpcm\right)\)
1) Xác định a và b để cho P=x^4+2x^3+ax^2+2x+b là bình phương cuả một đa thức
2) Cho x=a+1. Chứng minh rằng: x^16-a^16=(x^8+a^8)(x^2+a^2)(x+a)
4) Cho a+b+c=0. Chứng minh rằng: 2(a^4+b^4+c^4)=(a^2+b^2+c^2)^2
5) Với giá trị nào của a và b thì đa thức:
f(x)=x^4-3x^3+3x^2+ax+b chia hết cho đa thức g(x)=x^2-3x+4. Tìm đa thức thương.
6) Tìm x ; y ; z trong đẳng thức: x^2+4y^2+9z^2+2x+4y+6z+3=0 (pt)
7) Với a ; b ; c là độ dài 3 cạch của một tam giác. Chứng minh rằng biểu thức M=4b^2c^2-(b^2+c^2-a^2)^2>0
8) Chứng minh rằng (a-b) chia hết cho 6 <=> (a^3+b^3) chia hết cho 6
1. Cho \(x^2=a^2+b^2+ab\) và \(a+b=c\).
Chứng minh rằng : \(2x^4=a^4+b^4+c^4\)
2. Tính \(\left(x-2y\right)^6\)
Cho biết 2x^2= a^2+b^2+c^2 và a+b=c
CHứng minh 2x^4=a^4+b^4+c^4
\(\left\{\begin{matrix}2x^2=a^2+b^2+c^2\left(1\right)\\a+b=c\left(2\right)\end{matrix}\right.\)
(1)=>\(4x^4=\left(a^4+b^4+c^4\right)+2\left[\left(ab\right)^2+\left(ac\right)^2+\left(bc\right)^2\right]\)(3)
\(A=2\left(ac\right)^2+2\left(ab\right)^2+2\left(bc\right)^2=a^2\left(b^2+c^2\right)+c^2\left(a^2+b^2\right)+b^2\left(a^2+c^2\right)\) (*)
(2)=> \(\left\{\begin{matrix}a^2+b^2=c^2-2ab\\a^2+c^2=b^2+2ac\\b^2+c^2=a^2-2bc\\\end{matrix}\right.\)(4)
Thay (4) vào (*)
\(A=a^2\left(a^2+2bc\right)+c^2\left(c^2-2ab\right)+b^2\left(b^2+2ac\right)=a^4+2a^2bc+c^4-2abc^2+b^4+2ab^2c64\\ \)
\(A=\left(a^4+b^4+c^4\right)+2abc\left(a-c+b\right)=\left(a^4+b^4+c^4\right)+2abc.0=\left(a^4+b^4+c^4\right)\)(3)\(\Leftrightarrow4x^4=\left(a^4+b^4+c^4\right)+\left(a^4+b^4+c^4\right)=2\left(a^4+b^4+c^4\right)\)
\(\Rightarrow2x^4=\left(a^4+b^4+c^4\right)\) => dpcm
Cho x2=a2+b2+ab và a+b=c.Chứng minh rằng :2x4=a4+b4+c4
\(x^2=a^2+b^2+ab\)
\(\Leftrightarrow x^4=a^4+b^4+3a^2b^2+2a^3b+2ab^3\)
\(\Leftrightarrow2x^4=2a^4+2b^4+6a^2b^2+4a^3b+4ab^3\)
\(\Leftrightarrow2x^4=a^4+b^4+\left(a^2\right)^2+\left(b^2\right)^2+\left(2ab\right)^2+2a^2b^2+4a^3b+4ab^3\)
\(\Leftrightarrow2x^4=a^4+b^4+\left(a^2+2ab+b^2\right)^2\)
\(\Leftrightarrow2x^4=a^4+b^4+\left[\left(a+b\right)^2\right]^2\)
\(\Leftrightarrow2x^4=a^4+b^4+\left(a+b\right)^4\)
\(\Leftrightarrow2x^4=a^4+b^4+c^4\)(đpcm)
Bài làm :
Ta có :
\(x^2=a^2+b^2+ab\)
\(\Leftrightarrow x^4=a^4+b^4+3a^2b^2+2a^3b+2ab^3\)
\(\Leftrightarrow2x^4=2a^4+2b^4+6a^2b^2+4a^3b+4ab^3\)
\(\Leftrightarrow2x^4=a^4+b^4+\left(a^2\right)^2+\left(b^2\right)^2+\left(2ab\right)^2+2a^2b^2+4a^3b+4ab^3\)
\(\Leftrightarrow2x^4=a^4+b^4+\left(a^2+2ab+b^2\right)^2\)
\(\Leftrightarrow2x^4=a^4+b^4+\left[\left(a+b\right)^2\right]^2\)
\(\Leftrightarrow2x^4=a^4+b^4+\left(a+b\right)^4\)
\(\Leftrightarrow2x^4=a^4+b^4+c^4\)
=> Điều phải chứng minh
1. Cho \(x^2=a^2+b^2+ab\) và \(a+b=c\).
Chứng minh rằng : \(2x^4=a^4+b^4+c^4\)
2. Tính \(\left(x-2y\right)^6\)
\(a+b=c\Leftrightarrow\left(a+b\right)^4=c^4\)
\(\Leftrightarrow a^4+4a^3b+6a^2b^2+4ab^3+b^4=c^4\)
\(x^2=a^2+b^2+ab\Leftrightarrow x^4=\left(a^2+b^2+ab\right)^2\)
\(\Leftrightarrow x^4=a^4+b^4++a^2b^2+2a^2b^2+2ab^3+2a^3b\)
\(\Leftrightarrow2x^4=2a^4+2b^4+6a^2b^2+4a^3b+4ab^3\)
\(\Leftrightarrow2x^4=a^4+b^4+\left(a^4+4a^3b+6a^2b^2+4ab^3+b^4\right)\)
\(\Leftrightarrow2x^4=a^4+b^4+c^4\)
\(\left(x-2y\right)^6=x^6-6x^5\cdot2y+15x^4\cdot\left(2y\right)^2-20x^3\cdot\left(2y\right)^3+15x^2\cdot\left(2y\right)^4-6x\cdot\left(2y\right)^5+\left(2y\right)^6\)
\(=x^6-12x^5y+60x^4y^2-160x^3y^3+240x^2y^4-192xy^5+64y^6\)
a+b=c⇔(a+b)4=c4
⇔a4+4a3b+6a2b2+4ab3+b4=c4
x2=a2+b2+ab⇔x4=(a2+b2+ab)2
⇔x4=a4+b4++a2b2+2a2b2+2ab3+2a3b
⇔2x4=2a4+2b4+6a2b2+4a3b+4ab3
⇔2x4=a4+b4+(a4+4a3b+6a2b2+4ab3+b4)
⇔2x4=a4+b4+c4
1. Cho \(x^2=a^2+b^2+ab\) và \(a+b=c\).
Chứng minh rằng : \(2x^4=a^4+b^4+c^4\)
2. Tính \(\left(x-2y\right)^6\)