Những câu hỏi liên quan
NL
Xem chi tiết
KS
13 tháng 7 2018 lúc 20:15

1. 3/n-5 thuộc N<=> n-5 lớn hơn 0<=>n lớn hơn 5

2. 3/n-5 thuộc Z<=> n-5 khác 0<=> n khác 5

3. 9/2n-3 thuộc Z<=> 2n-3 khác 0<=> 2n khác 3<=> n thuộc Z

Bình luận (0)
H24
Xem chi tiết
H24
4 tháng 4 2021 lúc 17:40

cộng hay trừ vậy

Bình luận (3)
NT
4 tháng 4 2021 lúc 22:34

a) Để A là phân số thì \(n+5\ne0\)

hay \(n\ne-5\)

Bình luận (0)
KH
Xem chi tiết
VB
14 tháng 8 2021 lúc 13:26

A nguyên <=> 3  ⋮ n - 2

=> n - 2 thuộc Ư(3)

=> n - 2 thuộc {-1;1;-3;3}

=> n thuộc {1;3;-1;5}

B nguyên <=> n ⋮ n + 1

=> n + 1 - 1 ⋮ n + 1

=> 1 ⋮ n + 1

=> như a

Bình luận (0)
 Khách vãng lai đã xóa
NT
14 tháng 8 2021 lúc 13:26

ĐK : \(n\ne2\)

\(A=\frac{3}{n-2}\Rightarrow n-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

n - 21-13-3
n315-1

ĐK : \(n\ne-1\)

\(B=\frac{n}{n+1}=\frac{n+1-1}{n+1}=1-\frac{1}{n+1}\)

\(\Rightarrow n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)

n + 11-1
n0-2
Bình luận (0)
 Khách vãng lai đã xóa
NK
Xem chi tiết
HH
13 tháng 3 2018 lúc 8:41

A=(n-2)/(n+3)= (n-3+5)/(n-3)= 1+ 5/(n-3) 
Để biểu thức A lớn nhất thì 1+ 5/(n-3) LN. Mà 1>0; 1 ko đổi => 5/(n-3) LN. 5>0; 5 ko đổi=> n-3 nhỏ nhất, n-3>0. Mà n thuộc Z nên n-3 thuộc Z=> n-3=1 => n=4 
Khi đó A =4+2/4-3= 6/1=6

Bình luận (0)
NK
Xem chi tiết
H24
13 tháng 3 2018 lúc 9:23

a/ khác 2

b/ n={1; -1; 3;-3; 5}

c/ n=5

Bình luận (0)
NK
13 tháng 3 2018 lúc 9:27

bn phải ghi cách lm ra lun chứ ko là thầy mik cx cho 0 lun

p/s: cái này ko liên quan đến bài

Bình luận (0)
LY
Xem chi tiết
PJ
Xem chi tiết
ST
25 tháng 2 2017 lúc 17:27

a, A = \(\frac{3n-1}{n-2}=\frac{3n-6+5}{n-2}=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\)

Để A thuộc Z <=> n - 2 thuộc Ư(5) = {1;-1;5;-5}

Ta có: n - 2 = 1 => n = 3

          n - 2 = -1 => n = 1

          n - 2 = 5 => n = 7

          n - 2 = -5 => n = -3

Vậy n = {3;1;7;-3}

b, A = \(\frac{3n-1}{n-2}=\frac{3n-6+5}{n-2}=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\)

Để A đạt giá trị nhỏ nhất <=> \(\frac{5}{n-2}\) đạt giá trị nhỏ nhất

=> n - 2 đạt giá trị lớn nhất  (n - 2 \(\ne\)0 ; n - 2 < 0)

=> n - 2 = -1 => n = 1

Vậy để A có giá trị nhỏ nhất thì n = 1

c, \(\frac{3n-1}{n-2}=\frac{3n-6+5}{n-2}=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\)

Để A đạt giá trị lớn nhất <=> \(\frac{5}{n-2}\)đạt giá trị lớn nhất

=> n - 2 đạt giá trị nhỏ nhất (n - 2 \(\ne\)0 ; n - 2 > 0)

=> n - 2 = 1 => n = 3

Vậy để A đạt giá trị lớn nhất thì n = 3

Bình luận (0)
PT
Xem chi tiết
LH
15 tháng 8 2016 lúc 14:32

Ta có : \(\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=1+\frac{3}{n-2}\)

a) Ta có 1 là số nguyên, để \(\frac{3}{n-2}\) là số nguyên thì 3 chia hết cho n - 2.

<=> n - 2 thuộc Ư(3) = {1;2;-1;-2}

=> n thuộc {3;4;1;0}

b) Để A lớn nhất thì n - 2 = 1 (nếu không có 1 thì những số lớn hơn 1) 

=> n - 2 = 1

=> n = 3

Vậy GTLN của n = 3

Bình luận (0)
NH
15 tháng 8 2016 lúc 14:38

a) A=\(\frac{n+1}{n-2}=1+\frac{3}{n-2}\)

muốn A nguyên thì n-3=Ư(3)={-1,-3,1,3}

n-2=-1=> n=1

n-2=1=> n=3

n-2=-3=> n=-1

n-2=3=> n=5

=> kl cvos 4 gtri n thỏa:....

b) A=1+\(\frac{3}{n-2}\)

=> muốn A lớn nhất thì \(\frac{3}{n-2}\)lớn nhất

có : \(\frac{3}{n-2}>=3\) khi n nguyên

=> dấu = dảy ra khi n=3

vậy GTLN A=1+3=4 khi x=3

Bình luận (0)
NM
15 tháng 8 2016 lúc 14:43

a) Ta có: \(\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}=1+\frac{3}{n-2}\)

Để A là số nguyên thì 3 phải chia hết cho n - 2

=> n - 2 thuộc Ư(3) = { 1 ; 3 ; - 1 ; - 3 }

=> n thuộc { 3 ; 5 ; 1 ; - 1 }

Vậy n thuộc { 3 ; 5 ; 1 ; - 1 }

Bình luận (0)
LL
Xem chi tiết
ND
6 tháng 4 2017 lúc 21:06

a) Để A và n thuộc Z => n+1 chia hết cho n-2

A=(n-2+3) chia hết cho n-2

=> 3 chia hết cho n-2

lập bảng=> n thuộc {3,1,5,9,(-1)}

b) A lớn nhất khi n-2 nhỏ nhất=> n-2=1

                                           => n=3

Nhớ tk cho mk nha!

Bình luận (0)
H24
Xem chi tiết
TP
18 tháng 8 2018 lúc 12:19

a)

Để A thuộc Z thì ( dấu " : " là chia hết cho )

n + 1 : n - 2

n - 2 + 3 : n - 2

=> 3 : n - 2 => n - 2 thuộc Ư(3) = { 1; 3; -1; -3 }

Sau đó tìm n là xong

Bình luận (0)
TP
18 tháng 8 2018 lúc 12:24

b) Cũng gần tương tự như phần a !

\(A=\frac{n+1}{n-2}=1+\frac{3}{n-2}\)

Để A nhỏ nhất thì \(\frac{3}{n-3}\)nhỏ nhất 

mà n nguyên ( theo đề bài )

=> 3 : n - 3

Ta có bảng :

n - 31-13-3
n4260

Lần lượt thay n vào A thì ta thấy A nhỏ nhất <=> n = 0

Bình luận (0)
DH
18 tháng 8 2018 lúc 12:27

a) \(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=1+\frac{3}{n-2}\)

Để \(A\in Z\Leftrightarrow3⋮\left(n-2\right)\)

\(\Leftrightarrow n-2\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

Nêu n-2=1 thì n=3

Nếu n-2=-1 thì n=1

Nếu n-2=3 thì n=5

Nếu n-2=-3 thì n = -1

Vậy....

b) Để A đạt GTLN thì \(\frac{3}{x-2}\) đạt giá trị dương lớn nhất

=> x -  2 đạt giá trị dương nhỏ nhất

=> x - 2 = 1 => x = 3

Bình luận (0)