Những câu hỏi liên quan
IY
Xem chi tiết
PA
Xem chi tiết
CT
Xem chi tiết
NN
Xem chi tiết
LP
Xem chi tiết
NQ
3 tháng 8 2015 lúc 8:13

2n = 16

=> n = 16 : 2

=> n= 8

4n = 64

=> n = 64 : 4

=> n= 16

15n = 225

=> n = 225 : 15

=> n = 15

Bình luận (0)
NA
Xem chi tiết
LD
12 tháng 11 2020 lúc 16:13

a) Gọi d là ƯC( 7n + 10 ; 5n + 7 ) 

=> \(\hept{\begin{cases}7n+10⋮d\\5n+7⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5\left(7n+10\right)⋮d\\7\left(5n+7\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}35n+50⋮d\\35n+49⋮d\end{cases}}\)

=> ( 35n + 50 ) - ( 35n + 49 ) chia hết cho d

=> 35n + 50 - 35n - 49 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> ƯCLN( 7n + 10 ; 5n + 7 ) = 1

=> 7n + 10 ; 5n + 7 là hai số nguyên tố cùng nhau ( đpcm )

b) Gọi d là ƯC( 2n + 3 ; 4n + 8 )

=> \(\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)

=> ( 4n + 8 ) - ( 4n + 6 ) chia hết cho d

=> 4n + 8 - 4n - 6 chia hết cho d

=> 2 chia hết cho d

=> d ∈ { 1 ; 2 }

Với d = 2 => \(2n+3⋮̸̸d\)

=> d = 1

=> ƯCLN( 2n + 3 ; 4n + 8 ) = 1

=> 2n + 3 ; 4n + 8 là hai số nguyên tố cùng nhau ( đpcm )

Bình luận (0)
 Khách vãng lai đã xóa
PM
Xem chi tiết
KM
13 tháng 3 2017 lúc 12:56

Mình xin lỗi , mình xin chịu lúc nào mình nghĩ ra thì mình sẽ giúp cậu

Bình luận (0)
H24
Xem chi tiết
ND
Xem chi tiết
DP
3 tháng 2 2019 lúc 20:44

\(a;\frac{2n+5}{n+3}\)

Gọi \(d\inƯC\left(2n+5;n+3\right)\Rightarrow3n+5⋮d;n+3⋮d\)

\(\Rightarrow2n+5⋮d\)và \(2\left(n+3\right)⋮d\)

\(\Rightarrow\left[\left(2n+6\right)-\left(2n+5\right)\right]⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy \(\frac{2n+5}{n+3}\)là phân số tối giản

\(B=\frac{2n+5}{n+3}=\frac{2\left(n+3\right)+5-6}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=2-\frac{1}{n+3}\)

Với \(B\in Z\)để n là số nguyên 

\(\Rightarrow1⋮n+3\Rightarrow n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(\Rightarrow n\in\left\{-2;-4\right\}\)

Vậy.....................

Bình luận (0)
NT
13 tháng 1 2021 lúc 11:59

a, \(\frac{2n+5}{n+3}\)Đặt \(2n+5;n+3=d\left(d\inℕ^∗\right)\)

\(2n+5⋮d\) ; \(n+3⋮d\Rightarrow2n+6\)

Suy ra : \(2n+5-2n-6⋮d\Rightarrow-1⋮d\Rightarrow d=1\)

Vậy tta có đpcm 

b, \(B=\frac{2n+5}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=\frac{-1}{n+3}=\frac{1}{-n-3}\)

hay \(-n-3\inƯ\left\{1\right\}=\left\{\pm1\right\}\)

-n - 31-1
n-4-2
Bình luận (0)
 Khách vãng lai đã xóa