cmr m=x^4-5x^2+4 chia hết cho 24
. Bài 1:Tìm x
a; x.(x-4)+x-4=0
b; x.(x-4)=2x-8
c; (2x+3).(x-1)+(2x-3).(1-x)=0
d; (x+1).(6x^2+2x)+(x-1).(6x^2+2x)=0
. Bài 2:Tính giá trị biểu thức
a; A=x.(2y-z)-2y.(z-2y) với x=2,y=1/2,z= -1
b; B=x.(y-x)+y.(x-y) với x=13,y=3
c; C=x.(x+y)-5x-5y với x=33/5,y=12/5
. Bài 3
a; CMR: n^2.(n+1)+2n.(n+1) chia hết cho 6 với mọi n thuộc Z
b; CMR: 24^n+1 - 24^n chia hết cho 23 với mọi n thuộc N
c; CMR: (2^n-1)^2 - 2^n+1 chia hết cho 8 với mọi n thuộc Z
. Bài 4: CMR: m^3 - m chia hết cho 6 với mọi m thuộc Z
bn ... ơi...mik ...bỏ...cuộc ...hu...hu
. Huhu T^T mong sẽ có ai đó giúp mình "((
tìm x thuộc Z
3x+24 chia hết cho x-4
x^2+5 chia hết cho x+1
x^2-5x+1chia hết cho x-5
a) \(3x+24⋮x-4\)
\(\Rightarrow3x+24-3\left(x-4\right)⋮x-4\)
\(\Rightarrow3x+24-3x+12⋮x-4\)
\(\Rightarrow36⋮x-4\)
\(\Rightarrow x-4\in\left\{-1;1;-2;2;-3;3;-4;4;-9;9;-12;12;-18;18;-36;36\right\}\)
\(\Rightarrow x\in\left\{3;5;2;6;1;7;0;8;-5;13;-8;16;-14;22;-32;40\right\}\left(x\in Z\right)\)
b) \(x^2+5⋮x+1\)
\(\Rightarrow x^2+5-x\left(x+1\right)⋮x+1\)
\(\Rightarrow x^2+5-x^2-x⋮x+1\)
\(\Rightarrow5-x⋮x+1\)
\(\Rightarrow5-x+\left(x+1\right)⋮x+1\)
\(\Rightarrow5-x+x+1⋮x+1\)
\(\Rightarrow6⋮x+1\)
\(\Rightarrow x+1\in\left\{-1;1;-2;2;-3;3;-6;6\right\}\)
\(\Rightarrow x\in\left\{-2;0;-3;1;-4;2;-7;5\right\}\left(x\in Z\right)\)
Bài cuối tương tự bạn tự làm nhé, thanks!
bạn giúp mình 2 câu nhé :cmr
(x-1)(x-2)(x-3)(x-4)-80 chia hết cho x^2-5x
x^8-2x^5-2x^4+x^2-2x-100+10x(x^4+x)+(5x-1)^2chia hết cho x^2-5x-4
a) Tìm n thuộc Z, để: ( 2n2 –n+ 2 ) chia hết cho ( 2n +1 )
b) CMR: n4 + 2n3 – n2 - 2n chia hết cho 24, với mọi n thuộc Z
c) Tìm a để x3 – 3x2 + 5x + a chia hết cho ( x- 2 )
Bài 1 : tìm x
12+5x chia hết cho 4+x
Bài 2: CMR 3x+5y chia hết cho 7<=>x+4y chia hết cho 7
12+5x chia hết cho 4+x
4+x+4x+8 chia hết 4+x
4x+8 chia hết cho 4+x
8x+4 chia hết cho 4+x
8 chia hết cho 4+x
4+x thuộc ước của 8.
bài 1 bạn kia giải rồi nha , mình giải bài 2
3x + 5y ⋮ 7
<=> 3x + 12y - 7y ⋮ 7
<=> 3(x + 4y) - 7y ⋮ 7
Vì 7y ⋮ 7 . Để 3(x + 4y) - 7y ⋮ 7 <=> 3(x + 4y) ⋮ 7
Mà 3 ko chia hết 7 => x + 4y ⋮ 7 ( đpcm )
1.
\(x\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)\)
Tích 5 số tự nhiên liên tiếp sẽ chia hết cho 3,5
Ngoài ra trong 5 số này sẽ luôn tồn tại 2 ít nhất 2 số chẵn, trong đó có 1 số chia hết cho 4
Do đó tích 5 số tự nhiên liên tiếp luôn chia hết cho 2*3*4*5=120
2.(Tương tự)
3.Trong 3 số chẵn liên tiếp luôn tồn tại ít nhất 1 số chia hết cho 4 nên nó chia hết cho 2*2*4=16
Lại có trong 3 số chẵn liên tiếp luôn tồn tại 1 số chia hết cho 3(cái này viết số đó dưới dang \(x\left(x+2\right)\left(x+4\right)\)rồi xét 3 trường hợp với x=3k, x=3k+1 và x=3k+2)
Do đó tích 3 số chẵn liên tiếp chia hết cho 3*16=48.
4.
Trong 4 số chẵn liên tiếp luôn tồ tạ 1 số chia hết cho 4 và 1 số chia hết cho 8, dó đó tích này chia hết cho 2*2*4*8=128
Lại có trong 4 số chẵn liên tiếp tồn tại 1 số chia hết cho 3( làm như phần trên)
Do đó tích chia hết cho 3*128=384
5.
\(m^3-m=m\left(m-1\right)\left(m+1\right)\)
Đây là tích của 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 3
Nên \(m^3-m\)chia hết cho 2*3=6
CMR:
a,x^3+3x^2y+3xy^2-y^3 chia hết cho x^2-2xy+y^2
b,x^3-5x^2+8x-4 chia hết cho x-2
Cmr: x^4 +2x^3-x^2-2x chia hết cho 24 với mọi x thuộc R
\(x^4+2x^3-x^2-2x\)
\(=\left(x^4-x^3\right)+\left(3x^3-3x^2\right)+\left(2x^2-2x\right)\)
\(=\left(x-1\right)\left(x^3+3x^2+2x\right)\)
\(=\left(x-1\right)x\left(x+1\right)\left(x+2\right)\)
Bạn xét TRường hợp, chứng minh được tích 3 số nguyên liên tiếp chia hết cho 3, tích 4 số nguyên liên tiếp chia hết cho 8
Từ đó suy ra chia hết cho 24
1) Tìm số có 2 chữ số ab sao cho số N=ab - ba là số chính phương
2) CMR 5X² + 10 và 4x² + 4x + 6 không phải là số chính phương
3) CMR (5k)² -1 và (7k)² -1 chia hết cho 24
4) CMR với mọi n thuộc số tự nhiên ta có (7.5^2n)+(12.6^n) chia hết cho 19