Những câu hỏi liên quan
H24
Xem chi tiết
NT
Xem chi tiết
NT
12 tháng 9 2021 lúc 14:42

c: Ta có: AM//BC

AE⊥BC

Do đó:AM⊥AE

Suy ra: \(\widehat{AME}+\widehat{AEM}=90^0\)

hay \(\widehat{AME}+\widehat{BAD}=90^0\)

Bình luận (0)
H24
Xem chi tiết
NT
2 tháng 1 2022 lúc 21:11

a: Xét (O) có

MA là tiếp tuyến

MB là tiếp tuyến

Do đó: MA=MB

hay M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

nên O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra OM⊥AB

Bình luận (0)
CD
Xem chi tiết
NT
16 tháng 8 2021 lúc 23:02

a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAKC vuông tại K có KF là đường cao ứng với cạnh huyền AC, ta được:

\(AF\cdot AC=AK^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AK là đường cao ứng với cạnh huyền BC, ta được:

\(KB\cdot KC=AK^2\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra \(AF\cdot AC=KB\cdot KC\)

b: Xét tứ giác AFKE có 

\(\widehat{AFK}=\widehat{AEK}=\widehat{EAF}=90^0\)

Do đó: AFKE là hình chữ nhật

Suy ra: \(AK=FE\left(3\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAKB vuông tại K có KE là đường cao ứng với cạnh huyền AB, ta được:

\(AE\cdot AB=AK^2\left(4\right)\)

Từ \(\left(3\right),\left(4\right)\) suy ra \(AE\cdot AB=FE^2\)

c: Ta có: \(AF\cdot AC+AE\cdot AB+KB\cdot KC\)

\(=AK^2+AK^2+AK^2\)

\(=3\cdot AK^2=3\cdot FE^2\)

Bình luận (0)
H24
Xem chi tiết
H24
22 tháng 10 2023 lúc 17:59

\(a.R_{tđ}=\dfrac{R_1.\left(R_2+R_3\right)}{R_1+R_2+R_3}=\dfrac{6.\left(2+4\right)}{6+2+4}=3\Omega\\ b.U_{AB}=I.R_{tđ}=2.3=6V\\ c.Vì.R_1//R_{23}\Rightarrow U_{AB}=U_1=U_{23}=6V\\ I_1=\dfrac{U_1}{R_1}=\dfrac{6}{6}=1A\\ I_{23}=I-I_1=2-1=1A\\ Vì.R_2ntR_3\Rightarrow I_{23}=I_2=I_3=1A\)

Bình luận (0)
PT
Xem chi tiết
NT
30 tháng 11 2021 lúc 21:07

b: \(=\dfrac{x^2-x+1-3+1-x^2}{\left(x+1\right)\cdot\left(x^2-x+1\right)}=\dfrac{-x-1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{-1}{x^2-x+1}\)

Bình luận (0)
MN
Xem chi tiết
NT
6 tháng 12 2021 lúc 23:20

Bài 12: 

a: Xét ΔABM và ΔACN có

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

Bình luận (1)
QL
Xem chi tiết
B2
Xem chi tiết