Những câu hỏi liên quan
H24
Xem chi tiết
AH
29 tháng 5 2023 lúc 19:29

Bạn xem lại xem đã biết biểu thức đúng chưa vậy?

Bình luận (0)
HT
Xem chi tiết
HT
Xem chi tiết
DT
1 tháng 9 2021 lúc 19:20

Ta có: \(\sqrt{x^2-2x+10}=\sqrt{x^2-2x+1+9}=\sqrt{\left(x-1\right)^2+9}\ge\sqrt{9}\ge3\)

          \(\sqrt{x^2+4x+5}=\sqrt{x^2+4x+4+1}=\sqrt{\left(x+2\right)^2+1}\ge\sqrt{1}\ge1\)

    \(\Rightarrow\)   \(\sqrt{x^2-2x+10}+\sqrt{x^2+4x+5}\ge1+3\ge4\)

Vậy GTNN của biểu thức là 4

Bình luận (1)
LP
Xem chi tiết
XO
3 tháng 2 2023 lúc 21:37

1) Áp dụng bđt Cauchy cho 3 số dương ta có

 \(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{x}+x^3\ge4\sqrt[4]{\dfrac{1}{x}.\dfrac{1}{x}.\dfrac{1}{x}.x^3}=4\) (1)

\(\dfrac{3}{y^2}+y^2\ge2\sqrt{\dfrac{3}{y^2}.y^2}=2\sqrt{3}\) (2)

\(\dfrac{3}{z^3}+z=\dfrac{3}{z^3}+\dfrac{z}{3}+\dfrac{z}{3}+\dfrac{z}{3}\ge4\sqrt[4]{\dfrac{3}{z^3}.\dfrac{z}{3}.\dfrac{z}{3}.\dfrac{z}{3}}=4\sqrt{3}\) (3)

Cộng (1);(2);(3) theo vế ta được

\(\left(\dfrac{3}{x}+\dfrac{3}{y^2}+\dfrac{3}{z^3}\right)+\left(x^3+y^2+z\right)\ge4+2\sqrt{3}+4\sqrt{3}\)

\(\Leftrightarrow3\left(\dfrac{1}{x}+\dfrac{1}{y^2}+\dfrac{1}{z^3}\right)\ge3+4\sqrt{3}\)

\(\Leftrightarrow P\ge\dfrac{3+4\sqrt{3}}{3}\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{x}=x^3\\\dfrac{3}{y^2}=y^2\\\dfrac{3}{z^3}=\dfrac{z}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\sqrt[4]{3}\\z=\sqrt{3}\end{matrix}\right.\) (thỏa mãn giả thiết ban đầu)

 

Bình luận (0)
XO
3 tháng 2 2023 lúc 22:03

2) Ta có \(4\sqrt{ab}=2.\sqrt{a}.2\sqrt{b}\le a+4b\)

Dấu"=" khi a = 4b

nên \(\dfrac{8}{7a+4b+4\sqrt{ab}}\ge\dfrac{8}{7a+4b+a+4b}=\dfrac{1}{a+b}\)

Khi đó \(P\ge\dfrac{1}{a+b}-\dfrac{1}{\sqrt{a+b}}+\sqrt{a+b}\)

Đặt \(\sqrt{a+b}=t>0\) ta được

\(P\ge\dfrac{1}{t^2}-\dfrac{1}{t}+t=\left(\dfrac{1}{t^2}-\dfrac{2}{t}+1\right)+\dfrac{1}{t}+t-1\)

\(=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\)

Có \(\dfrac{1}{t}+t\ge2\sqrt{\dfrac{1}{t}.t}=2\) (BĐT Cauchy cho 2 số dương)

nên \(P=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\ge\left(\dfrac{1}{t}-1\right)^2+1\ge1\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{t}-1=0\\t=\dfrac{1}{t}\end{matrix}\right.\Leftrightarrow t=1\)(tm)

khi đó a + b = 1

mà a = 4b nên \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)

Vậy MinP = 1 khi \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)

 

Bình luận (0)
HK
Xem chi tiết
TN
26 tháng 1 2016 lúc 9:44

b)\(\sqrt{2^3+1}\) theo mình phần b như vậy ko bít đúng ko

Bình luận (0)
TN
26 tháng 1 2016 lúc 9:45

a)=**** 100%

b)\(\sqrt{2^3+1}\) phần b ko bít đúng ko nhưng phần a đúng ko 100%

Bình luận (0)
TN
26 tháng 1 2016 lúc 9:46

a)=1

b)\(\sqrt{2^3+1}\) phần b ko bít đúng ko nhưng phần a đúng ko 100%

Bình luận (0)
LT
Xem chi tiết
H24
Xem chi tiết
LA
Xem chi tiết
TM
28 tháng 5 2017 lúc 17:10

A=\(\sqrt{x^2-2x+1}+\sqrt{x^2+6x+9}=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+3\right)^2}\)=|x-1|+|x+3|=|1-x|+|x+3|

Áp dụng bđt |a|+|b|\(\ge\)|a+b| ta được: A=|1-x|+|x+3|\(\ge\)|1-x+x+3|=4

Dấu "=" xảy ra khi (1-x)(x+3)\(\ge\)0 <=> \(-3\le x\le1\)

Vậy Amin=4 khi \(-3\le x\le1\)

Bình luận (0)
HH
28 tháng 5 2017 lúc 17:07

A = \(\sqrt{x^2-2x+1}+\sqrt{x^2+6x+9}\)

  = \(\sqrt{\left(1-x\right)^2}+\sqrt{\left(x+3\right)^2}\)

 = 1 - x + x + 3

  = 4 

Bình luận (0)
TG
28 tháng 5 2017 lúc 17:09

kết quả là 

 =4

    đs...

Bình luận (0)
QL
Xem chi tiết
H24
3 tháng 11 2018 lúc 22:47

ĐKXĐ: x > 1

\(A=\sqrt{x-2\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}\)

 \(=\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1+6\sqrt{x-1}+9}\)

 \(=\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+3\right)^2}\)

 \(=\left|\sqrt{x-1}-1\right|+\left|\sqrt{x-1}+3\right|\)

 \(=\left|1-\sqrt{x-1}\right|+\sqrt{x-1}+3\ge1-\sqrt{x-1}+\sqrt{x-1}+3=4\)

\(\text{Dấu "=" xảy ra }\Leftrightarrow1-\sqrt{x-1}\ge0\)

                            \(\Leftrightarrow\sqrt{x-1}\le1\)

                            \(\Leftrightarrow x-1\le1\)

                           \(\Leftrightarrow x\le2\)

\(\text{Kết hợp ĐKXĐ ta được }1\le x\le2\)

\(\text{Vậy}\)\(A_{min}=4\Leftrightarrow1\le x\le2\)

Bình luận (0)