Những câu hỏi liên quan
VQ
Xem chi tiết
DT
30 tháng 7 2016 lúc 7:40

Ta có 5040 = 24. 32.5.7

A= n3(n2- 7)2 – 36n = n.[ n2(n2-7)2 – 36 ] = n. [n.(n2-7 ) -6].[n.(n2-7 ) +6]

 = n.(n3-7n – 6).(n3-7n +6)

Ta lại có n3-7n – 6 = n3 + n2 –n2 –n – 6n -6 = n2.(n+1)- n (n+1) -6(n+1)

=(n+1)(n2-n-6)= (n+1 )(n+2) (n-3)

Tương tự : n3-7n+6 = (n-1) (n-2)(n+3) 

Do đó A= (n-3)(n-2) (n-1) n (n+1) (n+2) (n+3)

Ta thấy : A là tích của 7 số nguyên liên tiếp mà trong 7 số nguyên liên tiếp:

-         Tồn tại một bội số của 5 (nên A chia hết  5 )

-         Tồn tại một bội của 7 (nên A chai hết  7 )

-         Tồn tại hai bội của 3 (nên A chia hết  9 )

-         Tồn tại 3 bội của 2 trong đó có bội của 4 (nên A chia hết 16)

Vậy A chia hết cho 5, 7,9,16 đôi một nguyên tố cùng nhau  A 5.7.9.16= 5040

Bình luận (0)
NQ
Xem chi tiết
HV
17 tháng 11 2017 lúc 21:40

Có 5040=16.9.5.7

A= n3(n2-7)2-36n

= n.[ n2(n2-7)2-36]

= n.[(n3-7n)2-36]

= n.(n3-7n-6)(n3-7n+6)

Có :

\(\cdot\) n3-7n-6

= n3-9n+2n-6

= n(n2-9)+2(n-3)

= n(n+3)(n-3)+2(n-3)

= (n-3)(n+1)(n+2)

\(\cdot\) n3-7n+6

= n3-9n+2n+6

= n(n-3)(n+3)+2(n+3)

= (n+3)(n-1)(n-2)

\(\Rightarrow A=\left(n-3\right)\left(n-1\right)\left(n-2\right)n\left(n+1\right)\left(n+3\right)\left(n+2\right)\)

Đây là tích 7 số nguyên liên tiếp , trong 7 số nguyên liên tiếp đó có

\(-\) Tồn tại 1 bội số của 5 \(\Rightarrow A⋮5\)

\(-\) Tồn tại 1 bội số của 7 \(\Rightarrow A⋮7\)

\(-\) Tồn tại 2 bội số của 3 \(\Rightarrow A⋮9\)

\(-\) Tồn tại 3 bội số của 2 , trong đó có 1 bội số của 4 \(\Rightarrow A⋮16\)

\(\Rightarrow A⋮9.16.5.7\)

\(\Rightarrow A⋮5040\left(đpcm\right)\)

Bình luận (0)
NQ
17 tháng 11 2017 lúc 21:24

với mọi n thuộc N

Bình luận (0)
KD
7 tháng 8 2021 lúc 21:32

A = n3(n2 -7)2 – 36n chia hết cho 5040 với mọi số tự nhiên n.
Hướng phân tích:
+ Trước hết cho hoc sinh nhận xét về các hạng tử của biểu thức A
+ Từ đó phân tích A thành nhân tử
Giải: Ta có
A =n[n2(n2 -7)2 -36]= n[(n3 -7n2)-36]
= n(n3 -7n2 -6)( n3 -7n2 +6)
Mà n3 -7n2 -6 = (n+1) (n+2) (n-3)
n3 -7n2 +6 = (n-1)(n-2)(n+3)
Do đó:
A= (n-3)(n-2)(n-1)(n+1)(n+2)(n+3)
Đây là tích của 7 số nguyên liên tiếp.Trong 7 số nguyên liên tiếp
+Tồn tại một  bội của 5 ⇒ A chia hết cho 5
+Tồn tại một bội của 7 ⇒ A chia hết cho 7
+Tồn tại hai bội của 3 ⇒ A chia hết cho 9
+Tồn tại ba bội số của 2,trong đó có một bội số của 4 ⇒ A chia hết cho 16
A chia hết cho các số 5,7,9,16 đôi một nguyên tố cùng nhau nên A chia hết cho
5.7.9.16 =5040.(đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
NL
Xem chi tiết
AN
10 tháng 12 2016 lúc 12:34

Ta có: \(5040=16.9.5.7\)

\(A=\text{ }n^3\left(n^2-7\right)^2-36n=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+2\right)\)

Chứng minh chia hết cho 24

Đây là 7 số nguyên liên tiếp nên sẽ có ít nhất 3 số chẵn liên tiếp mà trong 3 số chẵn liên tiếp sẽ có 2 số chia hết cho 2 và 1 số chia hết cho 4 nên A chia hết cho 16

Chứng minh chia hết cho 9

Cứ 3 số liên tiếp thì chia hết cho 3 mà trong này ta có 2 bộ số như vậy nên chia hết cho 9

Chứng minh chia hết cho 5

Trong 5 số liên tiếp có ít nhất 1 số chia hết cho 5 nên A chia hết cho 5

Chứng minh chia hết cho 7

Trong 7 số liên tiếp có ít nhất 1 số chia hết cho 7 nên A chia hết cho 7

Vì 16,9,5,7 là các số nguyên tố cũng nhau từng đôi 1 nên A chia hết cho 5040

Bình luận (0)
KD
7 tháng 8 2021 lúc 21:32

A = n3(n2 -7)2 – 36n chia hết cho 5040 với mọi số tự nhiên n.
Hướng phân tích:
+ Trước hết cho hoc sinh nhận xét về các hạng tử của biểu thức A
+ Từ đó phân tích A thành nhân tử
Giải: Ta có
A =n[n2(n2 -7)2 -36]= n[(n3 -7n2)-36]
= n(n3 -7n2 -6)( n3 -7n2 +6)
Mà n3 -7n2 -6 = (n+1) (n+2) (n-3)
n3 -7n2 +6 = (n-1)(n-2)(n+3)
Do đó:
A= (n-3)(n-2)(n-1)(n+1)(n+2)(n+3)
Đây là tích của 7 số nguyên liên tiếp.Trong 7 số nguyên liên tiếp
+Tồn tại một  bội của 5 ⇒ A chia hết cho 5
+Tồn tại một bội của 7 ⇒ A chia hết cho 7
+Tồn tại hai bội của 3 ⇒ A chia hết cho 9
+Tồn tại ba bội số của 2,trong đó có một bội số của 4 ⇒ A chia hết cho 16
A chia hết cho các số 5,7,9,16 đôi một nguyên tố cùng nhau nên A chia hết cho
5.7.9.16 =5040.(đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
HV
Xem chi tiết
PH
17 tháng 6 2018 lúc 20:06

Xét \(5040=2^4.3^2.5.7\)

Phân tích:

\(A=n\left[n^2\left(n^2-7\right)^2-36\right]=n\left[\left(n^2-7n\right)^2-6^2\right]\)

\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)

Ta có:

\(n^3-7n-6=\left(n+1\right)\left(n+2\right)\left(n-3\right)\)

\(n^3-7n+6=\left(n-1\right)\left(n-2\right)\left(n+3\right)\)

Do đó \(A=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

Đây là tích 7 số nguyên liên tiếp. Trong 7 số nguyên liên tiếp:

- Tồn tại 1 bội số của 5 (nên A chia hết cho 5)

- Tồn tại 1 bội số của 7 (nên A chia hết cho 7)

- Tồn tại 2 bội số của 3 (nên A chia hết cho 9)

- Tồn tại 3 bội số của 2, trong đó có 1 bội số của 4 (nên A chia hết cho 16)

A chia hết cho các số 5, 7, 9, 16 đôi một nguyên tố cùng nhau nên A chia hết cho 5.7.9.16 = 5040

Bình luận (0)
TN
Xem chi tiết
LA
4 tháng 10 2018 lúc 21:32

Thời gian có hạn copy cái này hộ mình vào google xem nha :

https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi

Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....

Có 500 giải nhanh nha đã có 200 người nhận rồi 

OKmm

Bình luận (0)
LL
4 tháng 10 2018 lúc 21:50

n3(n2 - 7)2 - 36n

= n[n2(n2 - 7)2 - 36]

= n[(n3 - 7n)2 - 62]

= n(n3 - 7n - 6)(n3 - 7n + 6)

= n(n3 - n - 6n - 6)(n3 - n - 6n + 6)

= n[n(n2 - 1) - 6(n + 1)][n(n2 - 1) - 6(n - 1)]

= n[n(n - 1)(n + 1) - 6(n + 1)][(n(n - 1)(n + 1) - 6(n - 1)]

= n(n + 1)[n(n - 1) - 6](n - 1)[n(n + 1)  - 6]

= n(n + 1)(n2 - n - 6)(n - 1)(n2 + n  - 6]

= n(n + 1)(n2 - 3n + 2n - 6)(n - 1)(n2 + 3n - 2n - 6)

= n(n + 1)[n(n - 3) + 2(n - 3)](n - 1)[n(n + 3) - 2(n + 3)]

= n(n + 1)(n + 2)(n - 3)(n - 1)(n - 2)(n + 3)

Đây là tích của bảy số nguyên liên tiếp. Trong bày số nguyên liên tiếp:

- Tồn tại một bội số của 5 (nên A chia hết cho 5)

- Tồn tại một bội số của 7 (nên A chia hết cho 7)

- Tồn tại hai bội số của 3 (nên A chia hết cho 9)

- Tồn tại 3 bội số của 2, trong đó có một bội số của 4 (nên A chia hết cho 16)

A chia hết cho các số 5, 7, 9, 16 từng đôi một nguyên tố cùng nhau nên A chia hết cho 5.7.9.16 = 5040 (đpcm)

Bình luận (0)
H24
Xem chi tiết
KV
15 tháng 10 2018 lúc 12:40

Ta có

A =n[n2(n2 -7)2 -36]= n[(n3 -7n2)-36]

= n(n3 -7n2 -6)( n3 -7n2 +6)

Mà n3 -7n2 -6 = (n+1) (n+2) (n-3)

n3 -7n2 +6 = (n-1)(n-2)(n+3)

Do đó:

A= (n-3)(n-2)(n-1)(n+1)(n+2)(n+3)

Đây là tích của 7 số nguyên liên tiếp.Trong 7 số nguyên liên tiếp

+Tồn tại một  bội của 5 ⇒ A chia hết cho 5

+Tồn tại một bội của 7 ⇒ A chia hết cho 7

+Tồn tại hai bội của 3 ⇒ A chia hết cho 9

+Tồn tại ba bội số của 2,trong đó có một bội số của 4 ⇒ A chia hết cho 16

A chia hết cho các số 5,7,9,16 đôi một nguyên tố cùng nhau nên A chia hết cho

5.7.9.16 =5040.

+ Qua ví dụ 1 rút ra cách làm như sau:

Gọi A(n) là một biểu thức phụ thuộc vào n (n ∈ N hoặc n ∈ Z).

Bình luận (0)
HK
1 tháng 6 2021 lúc 20:24

n^3-n^2+2n+7=(n^3+n)-(n^2+1)+n+8=n(n^2+1)-(n^2+1)+n+8. Để n(n^2+1)-(n^2+1)+n+8 chia hết cho n^2+1=>8+n chia hết cho n^2+1
Vậy n=2k hoặc 2k+1
Xét TH:n=2k
=>8+n=8+2k(1)
*n^2+1=(2k)^2+1=4k^2+1(2)
Từ (1) và (2) ta có:8+2k chia hết cho 2 mà 4k^2+1 không chia hết cho 2 nên n ko bằng 2k
Xét TH:n=2k+1=>8+n=8+2k+1(3)
*n^2+1=(2k+1)^2+1
n^2+1=(4k^2+1)+(2k+1)(4)
Từ 3 và 4 : muốn 8+n chia hết n^2 +1 thì 8 chia hết cho   4k^2+1
=>4k^2+1 thuộc{-1;+1;-2;+2;-4;+4;-8;8}
các bạn làm từng TH thì sẽ ra k=0 và n=1 và các bạn thế vào đề bài lai để kiểm tra kết quả

Bình luận (0)
 Khách vãng lai đã xóa
PN
Xem chi tiết
PN
Xem chi tiết
TH
Xem chi tiết