Tam giác ABC có BD, CE lần lượt là tia phân giác của hai góc B,C chứng minh tam giác ABC cân
Cho tam giác ABC cân tại A, góc A tù, BD, CE lần lượt là tia phân giác của góc B,C. BH, CK lần lượt vuông góc với CE, BD tại H,K. - ED//BC - Gọi I là giao điểm của BD và CE, chứng minh AI là tia phân giác của góc A - BH=CK - Vẽ các tia Bx vuông góc với BD, Cy vuông góc với CE. Bx và Cy cắt nhau tại F, chứng minh A,F,I thẳng hàng
cho tam giác ABC cân tại A . Tia phân giác của góc B và góc C cắt AC,AB lần lượt tại D và E . Chứng minh
a) tam giác AED cân
b) BE=ED=DC
c) gọi O là giao điểm của BD và CE . Chứng minh tam giác OED cân
a: Xét ΔADB và ΔAEC có
góc A chung
AB=AC
góc ABD=góc ACE
=>ΔADB=ΔAEC
=>AD=AE
b: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
ED//BC
=>góc EDB=góc DBC
=>góc EDB=góc EBD
=>ED=EB
Xét tứ giác BEDC có
DE//BC
BD=CE
=>BEDC là hình thang cân
=>EB=DC=ED
c: Xét ΔOBC có góc OBC=góc OCB
nên ΔOBC cân tại O
=>OB=OC
OB+OD=BD
OC+OE=CE
mà OB=OC và BD=CE
nên OD=OE
=>ΔODE cân tạiO
Cho tam giác ABC cân tại A, 2 tia phân giác của 2 góc B và C lần lượt cắt AC và AB tại D và E. Gọi I là giao điểm của 2 tia phân giác nói trên.
a) Hãy chứng minh tam giác IBC cân?
b) So sánh BD và CE.
c) Chứng minh rằng tam giác ABE là tam giác cân.
d) Tam giác ABC cần có thêm điều kiện gì để tam giác ADE là tam giác đều?
a)vì góc B=góc C
mà góc IBC=1/2 góc EBC và ICB=1/2 góc DCB
nên suy ra IBC=ICB suy ra IBC là tam giác cân
b)xét tam giác ECB và tam giác DBC có
BC là cạnh chung
góc ECB= góc DBC(câu a)
góc B= góc C
suy ra tam giác ECB = tam giác DBC (g.c,g)
cho cái k xong sẽ làm câu c và d
Bài 5: Cho tam giác ABC cân tại A, Tia phân giác của góc B và góc C cắt AC và AB lần lượt tại D và E. Chứng minh BD = CE.
Cho tam giác ABC cân tại A, 2 tia phân giác của 2 góc B và C lần lượt cắt AC và AB tại D và E. Gọi I là giao điểm của 2 tia phân giác nói trên.
a) Hãy chứng minh tam giác IBC cân?
b) So sánh BD và CE.
c) Chứng minh rằng tam giác ABE là tam giác cân.
d) Tam giác ABC cần có thêm điều kiện gì để tam giác ADE là tam giác đều?
(giải giúp câu c + d với ạ )
Chó tam giác ABC cân tại A, tia phân giác của góc B và góc C cắt AC và AB lần lượt tại D và E. chứng minh BD=CE
Gọi giao điểm của BE và CD là I.
Xét tam giác ABC cân tại A nên \(\widehat{B}=\widehat{C}\)
Tia phân giác của \(\widehat{B}\)và \(\widehat{C}\)cắt lần lượt tại D và E nên:
\(\widehat{ICB}=\widehat{IBC}\) và ID=IE
Vậy tam giác IBC cân và IB=IC.
Xét tam giác IBD và tam giác IEC có:
\(\widehat{EIC}=\widehat{DIB}\)(đối đỉnh)
IB=IC(cmt)
ID=IE(cmt)
Suy ra \(\Delta IDB=\Delta EIC\)(c.g.c)
=>BD=CE(2 cạnh tương ứng)
+) Xét \(\Delta\)ABC cân tại A
\(\Rightarrow\) AB = AC ( tính chất tam giác cân )
và \(\widehat{ABC}=\widehat{ACB}\)
\(\Rightarrow\frac{\widehat{ABC}}{2}=\frac{\widehat{ACB}}{2}\)
\(\Rightarrow\widehat{B_1}=\widehat{C_2}\)
+) Xét \(\Delta\) ABD và \(\Delta\) ACE có
\(\widehat{B_1}=\widehat{C_2}\) ( cmt)
AB = AC ( cmt)
\(\widehat{A}\) : góc chung
=> \(\Delta\)ABD = \(\Delta\) ACE (g-c-g)
=> BD = CE ( 2 cạnh tương ứng )
@@ Học tốt
Takigawa Miu_
Ta có : Góc B = Góc C
=>B/2=C/2
=>DBC^=ECB^
Xét Tam giác ECB và Tam giác DBC
BC cạnh chung
DBC^=ECB^ (cmt)
B^=C^(gt)
=>Tam giác ECB=tam giác DBC (g-c-g)
=>BD=CE (2 cạnh tương ứng)
=>ĐPCM
Cho tam giác ABC cân tại A và có cả ba góc đều là góc nhọn.
a)Về phía ngoài của tam giác vẽ tam giác ABE vuông cân ở B. Gọi H là trung điểm của BC, trên tia đối của tia AH lấy điểm I sao cho AI=BC. Chứng minh hai tam giác ABI và BEC bằng nhau và BI vuông góc với CE
b)Phân giác của các góc ABC, BDC cắt AC, BC lần lượt tại D, M. Phân giác của góc BDA cắt BC tại N. Chứng minh rằng BD=1/2 MN
Cho tam giác ABC cân tại A và có cả ba góc đều là góc nhọn.
a)Về phía ngoài của tam giác vẽ tam giác ABE vuông cân ở B. Gọi H là trung điểm của BC, trên tia đối của tia AH lấy điểm I sao cho AI=BC. Chứng minh hai tam giác ABI và BEC bằng nhau và BI vuông góc với CE
b)Phân giác của các góc ABC, BDC cắt AC, BC lần lượt tại D, M. Phân giác của góc BDA cắt BC tại N. Chứng minh rằng BD=1/2 MN
a)
+) Do tam giác ABC cân tại A nên trung tuyến AH đồng thời là đường caio.
Vậy nên \(\widehat{AHB}=90^o\)
Theo tính chất góc ngoài của tam giác, ta có:
\(\widehat{IAB}=\widehat{AHB}+\widehat{HBA}=90^o+\widehat{HBA}=\widehat{EBA}+\widehat{HBA}=\widehat{CBE}\)
Xét tam giác ABI và tam giác BEC có:
AI = BC (gt)
BA = EB (gt)
\(\widehat{IAB}=\widehat{CBE}\) (cmt)
\(\Rightarrow\Delta ABI=\Delta BEC\left(c-g-c\right)\)
+) Gọi giao điểm của EC với AB và BI lần lượt là J và K.
Do \(\Delta ABI=\Delta BEC\Rightarrow\widehat{KBJ}=\widehat{BEK}\)
Vậy thì \(\widehat{KBJ}+\widehat{KJB}=\widehat{BEK}+\widehat{KJB}=90^o\)
Suy ra \(\widehat{BKJ}=90^o\) hay \(BI\perp CE\)
b) Gọi O là trung điểm MN. Ta thấy DN và DM là phân giác của hai góc kề bù nên chúng vuông góc với nhau.
Vậy tam giác DMN vuông tại D. Khi đó ta có DO là trung tuyến ứng với cạnh huyền nên DO = MN/2
Vậy DO = OM = OM hay các tam giác DOM và DON cân tại O.
Ta có: \(\widehat{DOM}=180^o-2\widehat{DMO}=180^o-2\left(\widehat{MDB}+\widehat{MBD}\right)\)
\(=180^o-2.\widehat{MDB}-2.\widehat{MBD}=180^o-\widehat{BDC}-\widehat{ABC}\)
\(=180^o-\widehat{BDC}-\widehat{ACB}=\widehat{DBO}\)
Vậy tam giác DBO cân tại D hay DB = DO.
Vậy nên BD = MN/2.
xét tam giác BAI va CBE
be=ab
bc=ia
iab=ebc
=>tam giác BAI=tam giác CBE
Cho tam giác ABC cân tại A và có cả ba góc đều là góc nhọn.
a)Về phía ngoài của tam giác vẽ tam giác ABE vuông cân ở B. Gọi H là trung điểm của BC, trên tia đối của tia AH lấy điểm I sao cho AI=BC. Chứng minh hai tam giác ABI và BEC bằng nhau và BI vuông góc với CE
b)Phân giác của các góc ABC, BDC cắt AC, BC lần lượt tại D, M. Phân giác của góc BDA cắt BC tại N. Chứng minh rằng BD=1/2 MN
Em tham khảo tại đây nhé.
Câu hỏi của Nguyễn Minh Huy - Toán lớp 7 - Học toán với OnlineMath