Gpt \(x^2+xy-2015x-2016y-2017=0\)
tim nghiem cua pt :\(x^2-xy-2015x+2016y-2017=0\)
Tìm tất cả các số nguyên (x;y) biết : x2 + xy - 2015x - 2016y -2017 = 0
Tìm các số nguyên x;y thỏa mãn: x^2 + xy - 2015x - 2016y - 2017 = 0
\(x^2+xy-2015x-2016y-2017=0\)
\(\Rightarrow\left(x^2+xy+x\right)-\left(2016x-2016y-2016\right)=1\)
\(\Rightarrow x.\left(x+y+1\right)-2016.\left(x+y+1\right)=1\)
\(\Rightarrow\left(x-2016\right).\left(x+y+1\right)=1\)
Xét TH1: \(x-2016=1\) và \(x+y+1=1\)
\(\Rightarrow x=......;y=.......\)
Xét TH2: \(x-2016=-1\) và \(x+y+1=-1\)
\(\Rightarrow x=......;y=.......\)
Giải phương trình nghiệm nguyên: x2+xy-2015x-2016y-2017
Tìm x , y nguyên biêt :
a, x2 = y2 + 2y + 12
b, x2 + xy - 2015x - 2016y - 2017 = 0
a.)x^2=y^2+2x+12
x^2=y^2+2y+1+11
x^2-(y^2+2y+1)=11
x^2-(y+1)^2=11
(x-y-1)(x+y+1)=11
suy ra x-y-1=11 và x+y+1=1 hoặc x-y-1=1 và x+y+1=11
từ đó tìm được x,y
b.)x^2+xy-2015x-2016y-2017=0
x^2+xy+x-2016x-2016y-2016-1=0
x(x+y+1)-2016(x+y+1)=1
(x+y+1)(x-2016)=1
=> x+y+1=1 và x-2016=1 hoặc x+y+1=-1 và x-2016=-1
từ đó tìm được x,y
tìm x,y thuộc Z thỏa mãn : x2+xy-2015x-2016y-2017=0
giúp mình với!cảm ơn các bạn nhé!
Áp dụng : cho x, y là các số nguyên dương thỏa mãn 2015x^2 + x = 2016y^2 + y . Chứng minh rằng : x-y ; 2015x+2015y+1 và 2016x + 2016y là số chính phương
tìm tất cả các cặp số nguyên (x;y)thỏa mãn:
x2+xy-2015x-2016-2017=0
Hình như bạn ghi sai đề rồi
Mình sẽ làm bài của đề đúng
\(x^2+xy-2015x-2016y-2017=0\Leftrightarrow x^2+xy+x-2016x-2016y-2016=1\Leftrightarrow x\left(x+y+1\right)-2016\left(x+y+1\right)=1\Leftrightarrow\left(x+y+1\right)\left(x-2016\right)=1\Leftrightarrow\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y+1=1\\x-2016=1\end{matrix}\right.\\\left\{{}\begin{matrix}x+y+1=-1\\x-2016=-1\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x=2017\\y=-2017\end{matrix}\right.\\\left\{{}\begin{matrix}x=2015\\y=-2017\end{matrix}\right.\end{matrix}\right.\)
Vậy (x;y)={(2017;-2017);(2015;-2017)}
Cho : 2015x^2 + x=2016y^2 + y
chứng minh rằng: x^2 - y^2 là 1 số chính phương