Chứng minh rằng : 111...1 +2n chia hết 3 (n chữ số 1)
Chứng minh rằng 2n + 111....11 ( n chữ số 1 ) chia hết cho 3 ( n là số tự nhiên )
Ta tách 2n + 111...1 = 3n + (111..1 - n)
n chữ số n chữ số
Vì 1 số và tổng các chữ của nó có cùng số dư trong phép chia cho 3 nên 111...1(n chữ số 1) và n có cùng số dư trong phép chia cho 3 nên 111...1 - n chia hết cho 3
Mà 3n chia hết cho 3 => Vế phải chia hết cho 3. Vậy thì vế trái cũng chia hết cho 3 hay 2n + 111...1 chia hết cho 3
Chứng minh rằng 2n + 111....11 ( n chữ số 1 ) chia hết cho 3 ( n là số tự nhiên )
*Với n=3k , ta có :
\(2n+111...11=2.3k+111...11⋮3\) (1)
*Với n = 3k +1 , ta có :
\(2n+111...11=2.3k+1+111...11\)
\(=2.3k+111...12⋮3\) (2)
Từ (1) và (2) => \(2n+111...11⋮3\)
2n + 111...11 ( n chữ số 1 )
chia hết cho 3 thì tổng chia hết cho 3
= 2n + 1+1+1+..+1+1( n chữ số +1)
=2n+1n ( ví dụ nlaf 3 thì 1+1+1=3 . 1 =3 )
=3n
suy ra 3n chia hết cho 3
Chứng minh rằng:
a, 2n + 111...1 chia hết cho 3 (có n chữ số 1)
a) 2n + 111...1 = 3n + (111..1 - n)
n chữ số n chữ số
Vì 1 số và tổng các chữ của nó có cùng số dư trong phép chia cho 3 => 111...1 - n chia hết cho 3
Mà 3n chia hết cho 3 => 2n + 111...1 chia hết n chữ số
Nguyễn Việt Hoàng ! Quản lý 13/09 lúc 08:23
Báo cáo sai phạm
Hương Trần: Không biết thì đừng trả lời
Chứng minh rằng
2n+111...11 ( n chữ số 1) chia hết cho 5
n=1
2.1+1 chia hết cho 5
toán học trên sao hỏa
n =1
2 x 1 +1 chia hết cho 5
ko biết có đúng ko nữa
nếu sai thì sửa cho mk nhaI love you
Chứng minh rằng:2n+111....1(n số 1) chia hết cho 3
bài 1: cho biết các số tự nhiên a và 6a có tổng các chữ số giống nhau.. chứng minh rằng a chia hết cho 9
bài 2: chứng minh rằng với mọi số tự nhiên n ta có:
a) n. ( n+2) . (n+7) chia hết cho 3
b) 5^n -1 chia hết cho 4
c)n^2+n.5 không chia hết cho 7
bài 3:chứng minh rằng số 111....111 +8n chia hết cho 9( số 111...111 có n chữ số 1)
chứng minh rằng 2n + 111...11( n chữ số 1) chia hết cho 3
2. tìm giá trị nhỏ nhất của biểu thức A= 6n-1/ 3n + 2
Chứng minh rằng 2n+111...1 ⋮ 3 biết 111...1 là n chữ số 1
Tổng các chữ số của 2n + 111...1 là
2n + 1 + 1 + 1 + ... + 1 (n chữ số 1)
= 2n + n
= 3n ⋮ 3
Vậy (2n + 111...1) ⋮ 3
Chứng tỏ 2n + 111....1 ( n chữ số 1 ) chia hết cho 3
Để 2n + 111....111 (n chữ số 1) chia hết cho 3
Thì 2n + (1+1+1+....+1) (n chữ số 1) chia hết cho 3
Tổng các chữ số của 1+1+1+....+1 (n chữ số 1) là n.1 = n
2n + n = 3n
Vì 3n chia hết cho 3 nên 2n + 111....1 (n chữ số 1 ) chia hết cho 3
Chứng minh \(\left(2n+111....11\right)\), n chữ số 1 chia hết cho 3