Những câu hỏi liên quan
H24
Xem chi tiết
KR
27 tháng 6 2017 lúc 13:18

Sửa : \(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)

\(\frac{x+4}{2000}+1+\frac{x+3}{2001}+1=\frac{x+2}{2002}+1+\frac{x+1}{2003}+1\)

\(\frac{x+4+2000}{2000}+\frac{x+3+2001}{2001}=\frac{x+2+2002}{2002}+\frac{x+1+2003}{2002}\)

\(\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\)

\(\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2003}\right)=0\)

Vì \(\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2003}\right)\ne0\)

\(\Rightarrow x+2004=0\)

=> x = -2004 

Bình luận (0)
CT
Xem chi tiết
TM
10 tháng 9 2019 lúc 18:08

Tại sao lại =0??

Bình luận (0)
HM
Xem chi tiết
DL
25 tháng 5 2016 lúc 11:00

\(\frac{\sqrt{x-2002}}{x-2002}-\frac{1}{x-2002}+\frac{\sqrt{y-2003}}{y-2003}-\frac{1}{y-2003}+\frac{\sqrt{z-2004}}{z-2004}-\frac{1}{z-2004}=\frac{3}{4}\)

\(1-\frac{1}{x-2002}+1-\frac{1}{y-2003}+1-\frac{1}{z-2004}=\frac{3}{4}\)

\(3-\frac{1}{x-2002}-\frac{1}{y-2003}-\frac{1}{z-2004}=\frac{3}{4}\)

\(\frac{1}{x-2002}+\frac{1}{y-2003}+\frac{1}{z-2004}=3-\frac{3}{4}=\frac{9}{4}\)

=> không có giá trị x,y,z thỏa mãn đề

Bình luận (0)
BN
Xem chi tiết
TL
7 tháng 8 2016 lúc 21:39

\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)

\(\Leftrightarrow\left(\frac{x+4}{2000}+1\right)+\left(\frac{x+3}{2001}+1\right)=\left(\frac{x+2}{2002}+1\right)+\left(\frac{x+1}{2003}+1\right)\) (cộng cả 2 vế với 2)

\(\Leftrightarrow\)\(\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)

\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)

\(\Leftrightarrow x+2004=0\)

\(\Leftrightarrow x=2004\)

Bình luận (2)
NA
7 tháng 8 2016 lúc 21:40

\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)

<=> \(\frac{x+4}{2000}+1+\frac{x+3}{2001}+1=\frac{x+2}{2002}+1+\frac{x+1}{2003}+1\)

<=> \(\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)

<=> x+2004=0

<=> x=-2004

Bình luận (0)
LO
7 tháng 8 2016 lúc 21:46

\(\left(\frac{x+4}{2000}+1\right)\) + \(\left(\frac{x+3}{2001}+1\right)\) = \(\left(\frac{x+2}{2002}+1\right)\) + \(\left(\frac{x+1}{2003}+1\right)\) 

<=> \(\frac{x+2004}{2000}\) + \(\frac{x+2004}{2001}\) = \(\frac{x+2004}{2002}\) + \(\frac{x+2004}{2003}\) 

<=> ( x+ 2004 ) \(\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)\) = 0

<=>                    x+2004 = 0

<=>                              x = 0- 2004

<=>                               x= -2004

Vậy x= -2004

Bình luận (0)
TB
Xem chi tiết
AM
29 tháng 6 2015 lúc 16:19

\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)

<=>\(\frac{x+4}{2000}+1+\frac{x+3}{2001}+1=\frac{x+2}{2002}+1+\frac{x+1}{2003}+1\)

<=>\(\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\)

<=>\(\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)

Do \(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\)

=>x+2004=0

<=>x=-2004

Vậy x=-2004

Bình luận (0)
NT
7 tháng 11 2017 lúc 12:41

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

tôi mong các bn đừng làm như vậy !!!

Bình luận (0)
Ad
7 tháng 10 2018 lúc 16:10

Chào em !

\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)

\(\Leftrightarrow\frac{x+4}{2000}+\frac{x+3}{2001}-\frac{x+2}{2002}-\frac{x+1}{2003}=0\)

\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)

\(\Rightarrow\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)\ne0\)

\(\Leftrightarrow x+2004=0\Leftrightarrow x=-2004\)

Vậy \(x=-2004\)

Các em nên làm ngắn gọn như trên.

Bình luận (0)
CN
Xem chi tiết
SG
23 tháng 9 2016 lúc 20:53

\(\frac{x-1}{2004}+\frac{x-2}{2003}-\frac{x-3}{2002}=\frac{x-4}{2001}\)

=> \(\frac{x-1}{2004}+\frac{x-2}{2003}-\frac{x-3}{2002}-\frac{x-4}{2001}=0\)

=> \(\left(\frac{x-1}{2004}-1\right)+\left(\frac{x-2}{2003}-1\right)-\left(\frac{x-3}{2002}-1\right)-\left(\frac{x-4}{2001}-1\right)=0\)

=> \(\frac{x-2005}{2004}+\frac{x-2005}{2003}-\frac{x-2005}{2002}-\frac{x-2005}{2001}=0\)

=> \(\left(x-2005\right).\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)

Vì \(\frac{1}{2004}< \frac{1}{2002}\)\(\frac{1}{2003}< \frac{1}{2001}\)

=> \(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\ne0\)

=> \(x-2005=0\)

=> \(x=2005\)

Vậy \(x=2005\)

Bình luận (0)
HT
Xem chi tiết
H24
12 tháng 3 2020 lúc 9:59

Ai muốn gia nhập hội trai xinh gái đẹp thì k vào đây nha

Bình luận (0)
 Khách vãng lai đã xóa
KK
12 tháng 3 2020 lúc 10:03

a) \(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)

Đổi chỗ các trung tỉ cho nhau ta được: \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)\(\left(đpcm\right)\)

b)\(\Leftrightarrow\frac{x-1}{2004}+\frac{x-2}{2003}=\frac{x-3}{2002}+\frac{x-4}{2001}\)

Trừ cả 2 vế cho 2 . Đến đây thì dễ rồi.

Bình luận (0)
 Khách vãng lai đã xóa
PL
12 tháng 3 2020 lúc 10:05

a) Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Leftrightarrow a=bk;c=dk\)

=> VT = \(\frac{5bk+3b}{5bk-3b}=\frac{b\left(5k+3\right)}{b\left(5k-3\right)}=\frac{5k+3}{5k-3}\)

VP = \(\frac{5dk+3d}{5dk-3d}=\frac{d\left(5k+3\right)}{d\left(5k-3\right)}=\frac{5k+3}{5k-3}\)

Vậy VT = VP => ĐPCM

Bình luận (0)
 Khách vãng lai đã xóa
HP
Xem chi tiết
DH
7 tháng 2 2018 lúc 14:15

Ta có: \(\frac{x-1}{2004}+\frac{x-2}{2003}=\frac{x-3}{2002}+\frac{x-4}{2001}\)

\(\Leftrightarrow\frac{x-1}{2004}-1+\frac{x-2}{2003}-1=\frac{x-3}{2002}-1+\frac{x-4}{2001}-1\)

\(\Leftrightarrow\frac{x-1-2004}{2004}+\frac{x-2-2003}{2003}=\frac{x-3-2002}{2002}+\frac{x-4-2001}{2001}\)

\(\Leftrightarrow\frac{x-2005}{2004}+\frac{x-2005}{2003}-\frac{x-2005}{2002}-\frac{x-2005}{2001}=0\)

\(\Leftrightarrow\left(x-2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)

Vì \(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\ne0\)

=> x - 2005 = 0

=> x             = 2005

Vậy x = 2005

Bình luận (0)
H24
Xem chi tiết
TS
1 tháng 2 2018 lúc 21:20

=> (x - 1)/2004 - 1 + (x - 2)/2003 - 1 = (x - 3)/2002 -1 + (x - 4)/2001 - 1

=> (x - 2005)/2004 + (x - 2005)/2003 = (x - 2005)/2002 + (x - 2005)/2001

=> (x - 2005)/2004 + (x - 2005)/2003 - (x - 2005)/2002 - (x - 2005)/2001 = 0

=> (x - 2005) * ( 1/2004 + 1/2003 - 1/2002 - 1/2001) = 0

Ta thấy  ( 1/2004 + 1/2003 - 1/2002 - 1/2001) khác 0

=> x - 2005 = 0

=> x = 2005

     

Bình luận (0)
H24
1 tháng 2 2018 lúc 21:33

\(\frac{x-1}{2004}+\frac{x-2}{2003}-\frac{x-3}{2002}=\frac{x-4}{2001}\)

\(\Leftrightarrow\)\(\frac{x-1}{2004}+\frac{x-2}{2003}=\frac{x-4}{2001}+\frac{x-3}{2002}\)

\(\Leftrightarrow\)\(\frac{x-1}{2004}-1+\frac{x-2}{2003}-1=\)\(\frac{x-4}{2001}-1+\frac{x-3}{2002}-1\)

\(\Leftrightarrow\)\(\frac{x-2005}{2004}+\frac{x-2005}{2003}\)\(=\frac{x-2015}{2001}+\frac{x-2005}{2002}\)

\(\Leftrightarrow\)\(\frac{x-2005}{2004}+\frac{x-2005}{2003}-\frac{x-2005}{2001}-\frac{x-2005}{2002}=0\)

\(\Leftrightarrow\)( x - 2005 ) ( \(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2001}-\frac{1}{2002}\))  =  0

Do  \(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2001}-\frac{1}{2002}\)\(\ne\)0

\(\Rightarrow\)x  -   2005   =  0

\(\Leftrightarrow\)x  =  2005

Vậy  x  =  2005

Bình luận (0)