Tìm x, y với x/5=y/4 và x2-y2=64
Bài 1: Tìm x và y
a) x/4 = y/-5 và -3x + 2y = 55
b) x/y = -7/4 và 4x - 5y = 72
c) x/ -3 = y/8 và x2 - y2 = -44/5
d) 3x3 + y3 = 64/9
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{-5}=\dfrac{-3x+2y}{-12-10}=\dfrac{55}{-22}=\dfrac{-5}{2}\)
Do đó: \(\left\{{}\begin{matrix}x=\dfrac{-20}{2}=-10\\y=\dfrac{25}{2}\end{matrix}\right.\)
b: Ta có: \(\dfrac{x}{y}=\dfrac{-7}{4}\)
nên \(\dfrac{x}{-7}=\dfrac{y}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{-7}=\dfrac{y}{4}=\dfrac{4x-5y}{-28-20}=\dfrac{72}{-48}=\dfrac{-3}{2}\)
Do đó: \(\left\{{}\begin{matrix}x=\dfrac{21}{2}\\y=\dfrac{-12}{2}=-6\end{matrix}\right.\)
c) \(\dfrac{x}{-3}=\dfrac{y}{8}\)
⇒\(\dfrac{x^2}{-9}=\dfrac{y^2}{64}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x^2}{-9}=\dfrac{y^2}{64}=-\dfrac{44}{\dfrac{5}{-9+64}}=-\dfrac{44}{\dfrac{5}{55}}=-484\)
Cho biết y tỉ lệ thuận với x1 ; x2 là các giá trị của x . Y1;y2 là các giá trị tương ướng của y
a) Biết x;y Tỉ lệ thuận và x1 = 2 ; x2 = 3 ; y1 = 1/2 . Tìm y2 ?
b) Biết x;y Tỉ lệ nghịch và x1 = 1/2 ; y1 = 4 ; y2 = -4 . Tìm x2
Giúp mk đi ai đúng mk tích cho
Lời giải:
a. Vì $x,y$ tỉ lệ thuận nên đặt $y=kx$. Ta có:
$y_1=kx_1$ hay $\frac{1}{2}=k.2\Rightarrow k=\frac{1}{4}$. Vậy $y=\frac{1}{4}x$
$y_2=kx_2=\frac{1}{4}x_2=\frac{1}{4}.3=\frac{3}{4}$
b.
Vì $x,y$ tỉ lệ nghịch nên đặt $xy=k$.
$x_1y_1=k=x_2y_2$
$\Leftrightarrow \frac{1}{2}.4=x_2.(-4)$
$\Leftrightarrow x_2=\frac{-1}{2}$
Biết x,y là 2 đại lượng tỉ lệ thuận, x1;x2 là giá trị khác nhau của x và y1; y2 là các giá trị khác nhau của y.
a/ Biết y2-x2=7 ; x1=5,y1=2. Tính x2,y2
b/Biết x1+x2=4; y1+y2=12. Tìm công thức liên hệ y đối với x
Tính giá trị biểu thức:
a) A = 3 x 2 - 2 ( x - y ) 2 - 3 y 2 tại x = 4 và y = -4;
b) B = 4(x - 2)(x +1) + ( 2 x - 4 ) 2 + ( x + 1 ) 2 tại x = - 1 2 ;
c*) C = x 2 (y-z) + y 2 (z-x) + z 2 (x-y) tại x = 6, y = 5 và z = 4;
d*) D = x 2017 - 10 x 2016 + 10 x 2015 - . . . - 10 x 2 + l0x -10 với x = 9.
a) Tìm được A = (x- y)(x + 5y).
Thay x = 4 và y = -4 vào A tìm được A = -128.
b) Tìm được B = 9 ( x - 1 ) 2 .
Thay x = - 4 vào B tìm được B = 81 4 .
c) Tìm được C = (x - y)(y - z)(x - z).
Thay x = 6,y = 5 và z = 4 vào C tìm được C = 2.
d) Thay 10 = x +1 vào D và biến đổi ta được D = -1.
Tìm GTNN của (x2+1).(y2+1)-(x+4).(x-4)-(y-5).(y+5)
Tìm các số x,y,z biết:
a) x:y = 2:5 và 2x - y = 3
b) x/2 = y/3; y/4 = z/7 và 2x - y + z =50
c) x/2 = y/3 = z/4 và x2 - y2 + 2z2 = 108
Lời giải:
a. Áp dụng TCDTSBN:
\(\frac{x}{y}=\frac{2}{5}\Rightarrow \frac{x}{2}=\frac{y}{5}=\frac{2x}{4}=\frac{y}{5}=\frac{2x-y}{4-5}=\frac{3}{-1}=-3\)
$\Rightarrow x=-3.2=-6; y=-3.5=-15$
b. Áp dụng TCDTSBN:
$\frac{x}{2}=\frac{y}{3}; \frac{y}{4}=\frac{z}{7}$
$\Rightarrow \frac{x}{8}=\frac{y}{12}=\frac{z}{21}$
$=\frac{2x}{16}=\frac{y}{12}=\frac{z}{21}=\frac{2x-y+z}{16-12+21}=\frac{50}{25}=2$
$\Rightarrow x=8.2=16; y=2.12=24; z=2.21=42$
c.
$\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$
$\Rightarrow \frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{2z^2}{32}$
$=\frac{x^2-y^2+2z^2}{4-9+32}=\frac{108}{27}=4$
$\Rightarrow x^2=4.4=16; y^2=9.4=36; z^2=4.4=16$
Kết hợp với đkxđ suy ra:
$(x,y,z)=(4,6,4); (-4; -6; -4)$
Cho biết hai đại lượng y và x tỉ lệ nghịch với nhau :
x | X1 = 2 | X2 = 3 | X3 = 4 | X4 = 5 |
y | Y1 = 30 | Y2 = ? | Y3 = ? | Y4 = ? |
Tìm hệ số tỉ lệ
Ta có :
y và x là hai đại lượng tỉ lệ nghịch với nhau ⇒ y = a/x
Nên hệ số tỉ lệ a = x.y = 2.30 = 60
Cho 2 đại lương tỉ lệ nghịch x và y x1 và x2 là hai giá trị của x y1 y2 là hai giá trị của y
A biết x1 × y1 = 45 x2 = 9 tìm y2
B biết x1=2 ; x2= 4 ; y1 + y2 = 12 tính y1 và y2
C biết x2 = 3 ; x1 + 2y2 = 18 ;y1=12 tìm x1, y2
Giúp với
1.Tìm x,y,z biết :
a)2x/3 = 3y/4 =4z/5 và x+y+z = 49
b)x/5 = y/3= và x2 - y2 =4
c)x/y+z+1 =y/z+x+1 =z/x+y-2= x+y+z
Giúp mik vs ạ , cảm ơn mn
a) Ta có: \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\)
nên \(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{2x}{3}=12\\\dfrac{3y}{4}=12\\\dfrac{4z}{5}=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=36\\3y=48\\4z=60\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=18\\y=16\\z=20\end{matrix}\right.\)
Vậy: (x,y,z)=(18;16;20)
b) Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=5k\\y=3k\end{matrix}\right.\)
Ta có: \(x^2-y^2=4\)
\(\Leftrightarrow\left(5k\right)^2-\left(3k\right)^2=4\)
\(\Leftrightarrow16k^2=4\)
\(\Leftrightarrow k\in\left\{\dfrac{1}{2};-\dfrac{1}{2}\right\}\)
Trường hợp 1: \(k=\dfrac{1}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=5k=5\cdot\dfrac{1}{2}=\dfrac{5}{2}\\y=3k=3\cdot\dfrac{1}{2}=\dfrac{3}{2}\end{matrix}\right.\)
Trường hợp 2: \(k=-\dfrac{1}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=5k=5\cdot\dfrac{-1}{2}=\dfrac{-5}{2}\\y=3k=3\cdot\dfrac{-1}{2}=\dfrac{-3}{2}\end{matrix}\right.\)
Vậy: \(\left(x,y\right)\in\left\{\left(\dfrac{5}{2};\dfrac{3}{2}\right);\left(-\dfrac{5}{2};-\dfrac{3}{2}\right)\right\}\)
a)
Theo tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Suy ra :
\(x=\dfrac{12.3}{2}=18\\ y=\dfrac{12.4}{3}=16\\ z=\dfrac{12.5}{4}=15\)
b)
\(x=\dfrac{y}{3}.5=\dfrac{5y}{3}\\ x^2-y^2=4\\ \Leftrightarrow\left(\dfrac{5y}{3}\right)^2-y^2=4\\ \Leftrightarrow\dfrac{16y^2}{9}=4\Leftrightarrow y=\pm\dfrac{3}{2} \)
Với $y = \dfrac{3}{2}$ thì $x = \dfrac{5}{2}$
Với $y = \dfrac{-3}{2}$ thì $x = \dfrac{-5}{2}$
c)
\(\dfrac{x}{y+z+1}=\dfrac{y}{z+x+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{2x+2y+2z}=\dfrac{1}{2}\)
Suy ra :
\(2x=y+z+1\Leftrightarrow y+z=2x-1\)
Mặt khác :
\(x+y+z=\dfrac{1}{2}\Leftrightarrow x+2x-1=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{2}\)
\(2y=x+z+1=z+\dfrac{3}{2}\)
Mà \(y+z=0\Leftrightarrow z=-y\)
nên suy ra: \(y=\dfrac{1}{2};z=-\dfrac{1}{2}\)
a) x/2 = y/3; y/4=z/5 và x2 -y2=-16
b) tìm x biết : |2x+3|=x+2
c)tìm nghiệm của các đa thức sau: f(x)=-3x+6
Th1: 2x+3 ≥ 0
Khi đó: |2x+3| =x+2
(2x+3)= x+2
- 2x+3= x+2
-2x-x= 2-3
x= -1
Th2: 2x+3 < 0
Khi đó: |2x+3|=x+2
-(2x+3) = x +2
-2x-3 = x+2
-3x = 5
x=-5/3
Vậy x= -1
x= -5/3
Lớp 6 cugx học dạng v nè
`x/2=y/3 <=> x/8=y/12;
`y/4=z/5 <=> y/12=z/15.`
`<=> x/8=y/12=z/15=(x^2-y^2)/(64-144)=16/80=1/5`.
`@ x/8=1/5 <=> x= 8/5`.
`@ y/12=1/5 <=> y=12/5`.
`@ z/15=1/5 <=> y=15/5`.
Vậy...
Lời giải:
a. Đặt $\frac{x}{2}=\frac{y}{3}=a\Rightarrow x=2a; y=3a$
$x^2-y^2=(2a)^2-(3a)^2=-16$
$\Rightarrow -5a^2=-16\Rightarrow a=\pm \frac{4}{\sqrt{5}}$
Nếu $a=\frac{-4}{\sqrt{5}}$ thì:
$x=2a=\frac{-8}{\sqrt{5}}; y=3a=\frac{-12}{\sqrt{5}}; z=\frac{5}{4}y=-3\sqrt{5}$
Nếu $a=\frac{4}{\sqrt{5}}$ thì:
$x=2a=\frac{8}{\sqrt{5}}; y=3a=\frac{12}{\sqrt{5}}; z=\frac{5}{4}y=3\sqrt{5}$
b.
Nếu $x\geq \frac{-3}{2}$ thì:
$2x+3=x+2$
$\Leftrightarrow x=-1$
Nếu $x< \frac{-3}{2}$ thì:
$-2x-3=x+2$
$\Leftrightarrow -5=3x\Leftrightarrow x=\frac{-5}{3}$
Thử lại thấy 2 giá trị $-1, \frac{-5}{3}$ đều tm
c.
$f(x)=-3x+6=0$
$\Leftrightarrow -3x=-6\Leftrightarrow x=2$
Vậy $x=2$ là nghiệm của đa thức.