cmr: nếu \(a^2+b^2⋮21\) thì \(a^2+b^2⋮441\)
( dùng đl FERMAT)
CMR : với a,b thuộc Zthì a2+b2 chia hết cho 21 thì a2+b2 chia hết cho 441
Nếu \(a^2+b^2⋮21\) thì \(a^2+b^2⋮441\)
giả sử a^2 + b^2 chia hết cho 21
nếu a,b chia 7 dư (1...7)
thì a^2,b^2 chia 7 dư (1;2;4)
thì a^2 + b^2 không có giá trị nào chia hết cho 7
=> a^2 + b^2 chia hết cho 7 <=> a chia hết cho 7 và b cũng chia hết cho 7
=> a^2,b^2 chia hết cho 49
a,b chia 3 dư {1,2}
a^2,b^2 chia 3 dư 1
=> a^2 + b^2 không có giá trị nào chia hết cho 3
=> a và b đều chia hết cho 3
=> a^2 + b^2 chia hết cho 9
=> a^2 + b^2 chia hết cho 21 thì chia hết cho 21^2 = 441
CHÚC EM HỌC TỐT ^_^
Cho a,b là 2 số nguyên.
CMR:\(5\left(a+b\right)^2+ab\)chia hết cho 441 thì ab cũng chia hết cho 441
Do \(5\left(a+b\right)^2+ab\)chia hết cho 441 = 212 nên
\(4\left(5\left(a+b\right)^2+ab\right)=20\left(a+b\right)^2+4ab\)chia hết cho 212
Ta lại có
\(20\left(a+b\right)^2+4ab=20\left(a+b\right)^2+\left(a+b\right)^2-\left(a-b\right)^2\)
\(=21\left(a+b\right)^2-\left(a-b\right)^2\)
Vì 21(a+b)2 chia hết cho 21 nên (a - b)2 chia hết cho 21
Ta thấy rằng 21 = 3.7 (3,7 là hai số nguyên tố)
Nên (a - b)2 chia hết cho 3 và 7
=> (a - b) chia hết cho 3 và 7 (vì 3, 7 là số nguyên tố)
=> (a - b) chia hết cho 21
=> (a - b)2 chia hết cho 212
Kết hợp với \(21\left(a+b\right)^2-\left(a-b\right)^2\)chia hết cho 212
=> 21(a + b)2 chia hết cho 212
=> (a + b) chia hết cho 21
Chứng minh tương tự ta se suy ra được (a + b)2 chia hết cho 212
=> 5(a + b)2 chia hết cho 212
=> ab chia hết cho 212 = 441
CMR: a2+b2=c2 => Đây là ĐL Pitago
Chứng minh biết: \(a^2+b^2\) chia hết cho \(21\)thì \(a^2+b^2\)chia hết cho \(441\)
chứng minh pt: \(a^2+b^2⋮21\) thì \(a^2+b^2⋮441\)
Phương pháp : Phản chứng
- Nguồn : cop YaHoo , có vài chỗ mik sửa lại cho dễ hiểu
============================
Ta có a^2 + b^2 chia hết cho 21 => a2 +b2 chia hết cho 7 và 3
+Nếu a,b không chia hết cho 7 hay chia 7 dư m (m\(\in\left\{1,2,3,4,5,6,7\right\}\))
thì a^2,b^2 chia 7 dư (1;2;4)
Khi đó a^2 + b^2 không chia hết cho 7 (loại)
+ Khi đó a^2 + b^2 chia hết cho 7 <=> a chia hết cho 7 và b cũng chia hết cho 7
=> a^2,b^2 chia hết cho 49 và a2+b2 chia hết cho 49 (thỏa mãn)-*
+ Nếu a,b không chia hết cho 3hay chia 3 dư {1,2}
=>a^2,b^2 chia 3 dư 1
=> a^2 + b^2 không chia hết cho 3 (loại)
+Khi đó a và b đều chia hết cho 3
=> a^2 + b^2 chia hết cho 9 ( thỏa mãn) -**
Từ * và ** , vì (9,49)=1 => a2 + b2 chia hết cho 9.49 =411
Vậy a^2 + b^2 chia hết cho 21 thì chia hết cho 441
cmr,\(\forall n\inℕ\)
a) \(2^{2^{4n+1}}+7⋮11\)
b)\(2^{2^{6n+2}}+3⋮19\)
(dung định lí Fermat )
CMR với số thực a,B,c,d,e thì a^2+b^2+c^2+d^2+e^2 lớn hơn hoặc bằng 0
CM hộ e nhé nếu dùng đẳng thức lm ơn CM luôn đẳng thức ạ
a² + b² + c² + d² + e² ≥ a(b + c + d + e)
Ta có: a² + b² + c² + d² + e²
= (a²/4 + b²) + (a²/4 + c²) + (a²/4 + d²) + (a²/4 + e²)
Lại có: (a/2 - b)² ≥ 0 <=> a²/4 - ab + b² ≥ 0 <=> a²/4 + b² ≥ ab
Tương tự ta có:
. a²/4 + c² ≥ ac
. a²/4 + d² ≥ ad
. a²/4 + e² ≥ ae
--> (a²/4 + b²) + (a²/4 + c²) + (a²/4 + d²) + (a²/4 + e²) ≥ ab + ac + ad + ae
<=> a² + b² + c² + d² + e² ≥ a(b + c + d + e) --> đ.p.c.m
Dấu " = " xảy ra <=> a/2 = b = c = d = e
P/s: Hơi hơi dễ nhỉ
CMR với số thực a,B,c,d,e thì a^2+b^2+c^2+d^2+e^2 lớn hơn hoặc bằng 0
CM hộ e nhé nếu dùng đẳng thức lm ơn CM luôn đẳng thức ạ