Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Đại số lớp 7

KN

chứng minh pt: \(a^2+b^2⋮21\) thì \(a^2+b^2⋮441\)

HD
27 tháng 4 2017 lúc 15:39

Phương pháp : Phản chứng

- Nguồn : cop YaHoo , có vài chỗ mik sửa lại cho dễ hiểu

============================

Ta có a^2 + b^2 chia hết cho 21 => a2 +b2 chia hết cho 7 và 3
+Nếu a,b không chia hết cho 7 hay chia 7 dư m (m\(\in\left\{1,2,3,4,5,6,7\right\}\))
thì a^2,b^2 chia 7 dư (1;2;4)
Khi đó a^2 + b^2 không chia hết cho 7 (loại)
+ Khi đó a^2 + b^2 chia hết cho 7 <=> a chia hết cho 7 và b cũng chia hết cho 7
=> a^2,b^2 chia hết cho 49 và a2+b2 chia hết cho 49 (thỏa mãn)-*
+ Nếu a,b không chia hết cho 3hay chia 3 dư {1,2}
=>a^2,b^2 chia 3 dư 1
=> a^2 + b^2 không chia hết cho 3 (loại)
+Khi đó a và b đều chia hết cho 3
=> a^2 + b^2 chia hết cho 9 ( thỏa mãn) -**

Từ * và ** , vì (9,49)=1 => a2 + b2 chia hết cho 9.49 =411
Vậy a^2 + b^2 chia hết cho 21 thì chia hết cho 441

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
NW
Xem chi tiết
LS
Xem chi tiết
NL
Xem chi tiết
NG
Xem chi tiết
NK
Xem chi tiết
EC
Xem chi tiết
TN
Xem chi tiết
AF
Xem chi tiết