cho a và b là 2 số tự nhiên biết a:3 dư 1, b : 3 dư 2 . cmr ab:3 dư 2
Cho a,b là hai số tự nhiên, biết a:3 dư 1; b:3 dư 2. CMR: ab:3 dư 2
Giúp mk vs nha
Ta có : a = 3m +1 và b = 3n +2 (với n,m là STN)
=> ab = (3m + 1)(3n + 2) = 9nm + 6m + 3n + 2 = 3(3mn + 2m + n) + 2
Mà 3(3mn + 2m + n) chia hết cho 3 => ab chia 3 dư 2 (ĐPCM)
Vậy .......
a=3n+1
b= 3m+2
a*b= 3(3nm+m+2n) +2 số này chia 3 sẽ dư 2.
đặt a = 3k1 + 1 ; b = 3k2 + 2 ( k1 , k2 thuộc N )
Ta có :
ab = ( 3k1 + 1 ) ( 3k2 + 2 ) = 9k1k2 + 3k2 + 6k1 + 2 = 3 ( 3k1k2 + k2 + 2k1 ) + 2
Ta thấy ab chia 3 dư 2
a )cho a và b là 2 số tự nhiên. Biết a chia 3 dư 1, b chia 3 dư 2. chứng minh ab chia 3 dư 2
b) biết số tự nhiên a chia 5 dư 4.Chứng minh a2 chia 5 dư 1
a) Vì a chia 3 dư 1 nên a có dạng 3m+1 , vì b chia 3 dư 2 nên b có dạng 3n+2. \(\left(m,n\in N\right)\)
Ta có \(ab=\left(3m+1\right)\left(3n+2\right)=3mn+6m+3n+2\)
\(=3\left(mn+2m+n\right)+2\)
Vậy ab chia 3 dư 2 .
b) Vì a chia 5 dư 4 nên a có dạng 5k-1 \(\left(k\in N\right)\)
Ta có \(a^2=\left(5k-1\right)^2=25k^2-10k+1=5\left(5k^2-2k\right)+1\)
Vậy \(a^2\) chia 5 dư 1 .
1. Cho hai số tự nhiên a và b, biết a chia cho 6 dư 2 và b chia cho 6 dư 3. Chứng minh rằng ab chia hết cho 6
2. Cho a và b là hai số tự nhiên, biết a chia cho 5 dư 2 và b chia cho 5 dư 3. Chứng minh rằng ab chia cho 5 dư 1
1) a chia 6 dư 2 => a= 6k+2
b chia 6 dư 3 => b= 6k+3
=> ab=\(\left(6k+2\right)\left(6k+3\right)=36k^2+30k+6\)=> chia hết cho 6
2) a= 5k+2; b=5k+3
=> \(ab=\left(5k+2\right)\left(5k+3\right)=25k^2+25k+6=25k\left(k+1\right)+6\)
=> dễ thấy 25k(k+1) chia hết cho 5. 6 chia 5 dư 1
=> ab chia 5 dư 1
cho a và b là 2 số tự nhiên liên tiếp,biết a:3 dư 1, b:3 dư 2. chứng minh ab: 3 dư 2
gọi 2 số đó là a và b
theo bài ra, ta có:
a = 3q + 1
b = 3q + 2
(mk nghĩ ab ở đây là nhân b)
=> ab = (3q+ 1) (3q + 2)
=> ab = 9q2 + 6q + 3q + 2
=> ab = 3 (3q2 + 2q + 1q) + 2
mà 3 (3q2 + 2q + 1q) chia hết cho 3
=> ab chia 3 dư 2 (đpcm)
Cho a và b là hai số tự nhiên. Biết a chia cho 3 dư 1, b chia 3 dư 2. Chứng minh ab chia 3 dư 2
a chia 3 dư 1 nên a=3k+1
b chia 3 dư 2 nên b=3e+2
a*b=(3k+1)(3e+2)
=9ke+6k+3e+2
=3(3k2+2k+e)+2 chia 3 dư 2
Cho a và b là 2 số tự nhiên, Biế t a chia 5 dư 2 và b chia 5 dư 3. CMR ab chia hết cho 5 dư 1
1) Cho 2 số tự nhiên a và b, biết 2 chia cho 6 dư 2 và b chia cho 6 dư 3. . Chứng minh rằng ab chia hết cho 6.
2) Cho a và b là 2 sớ tự nhiên, biết a chia cho 5 dư 2 và b chia cho 5 dư 3 . Chứng minh rằng ab chia cho 5 dư 1.
3) Cho 2 số tự nhiên a và b, biết a chia cho 6 dư 3 và ab chia hết cho 6. . Hỏi b chia cho 6 có số dư là bao nhiêu? Chứng minh.
4) Chứng minh rằng: n (2n - 3) - 2n (n + 1) luôn chia hết cho 5 với n là số tự nhiên.
5) Chứng minh rằng với mọi số nguyên n biểu thức (n - 1) (n + 4) - (n - 4) (n + 1) luôn chia hết cho 6.
Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6
Cho a và b là hai số tự nhiên. Biết a chia cho 3 dư 1; b chia cho 3 dư 2. Chứng minh rằng ab chia cho 3 dư 2.
Ta có: a chia cho 3 dư 1 ⇒ a = 3q + 1 (q ∈N)
b chia cho 3 dư 2 ⇒ b = 3k + 2 (k ∈N)
a.b = (3q +1)(3k + 2) = 9qk + 6q + 3k +2
Vì 9 ⋮ 3 nên 9qk ⋮ 3
Vì 6 ⋮ 3 nên 6q ⋮ 3
Vì 3⋮ 3 nên 3k ⋮ 3
Vậy a.b = 9qk + 6q + 3k + 2 = 3(3qk + 2q + k) +2 chia cho 3 dư 2.(đpcm)
Cho a và b là 2 số tự nhiên. Biết a chia cho 3 dư 1; b chia cho 3 dư 2. Chứng minh rằng ab chia cho 3 dư 2
Gọi k là một số nguyên, theo đề ta có:
a=3k+1
b=3k+2
ab=(3k+1)(3k+2)=9k^2+9k+2
vì 9k^2 và 9k chia hết cho 3
nên ab chia 3 dư 2
Ta có:
\(a=3k+2\left(k\in n\right)\)
\(\Rightarrow a\cdot b=\left(3k+1\right)\left(3k+2\right)\)
\(=9k^2+9k+2\)1 số chia ko chia hết cho 3 dư 2
\(\Rightarrowđcpm\)