CMR:(119+118+............+11+1)chia hết cho 5
Chứng minh rằng : A = 119 + 118 +...................... + 11 + 1 chia hết cho 5
sửa đề : CMR \(A=1^{19}+1^{18}+...+1^1+1\)
A = 1 + 1 + ... + 1 + 1 ( 20 số hạng )
A = 20 chia hết cho 5 => A chia hết cho 5 ( đpcm )
cho A=119+118+...+11+1 chứng minh A chia hết cho 5
c
òi cậu viết sai hết đề thế này mk bt cậu nên làm hộ vậy!
A = 11^9 + 11^8 + ... + 11 + 1
=> 11A = 11^10 + 11^9 +..........+ 11^2 + 11
11A - A = (11^10 + 11^9 +..........+ 11^2 + 11 ) - (11^9 + 11^8 + ... + 11 + 1)
10A = 11^10 - 1
A = (11^10 - 1 ) : 10
vì 11^10 có tận cùng = 1 => (11^10 - 1) có tận cùng = 0 =>(11^10 - 1 ) : 10 có tận cùng là 0 .
. Vậy A chia hết cho 5
BT 1 :
1) CMR : A = 2^10+2^11+2^12 chia hết cho 7 .
2 ) Viết 7*32 thành tổng của 3 lũy thừa có cơ số 2 với các số mũ là 3 số tự nhiên liên tiếp .
BT 2 : Tính :
1 ) M=3/1/117 *1/119-4/117*5/118/119-5/117*119+8/39 .
2 ) N = x^15-8x^14+8x^13-8x^12+....+8x-5 với x=7 .
( 3/1/117 : 3 và 1/117 ; 5/118/119 : 5 và 118/119 nhá ! Giúp mình nha , mình cần lắm lun ) < , >
Bài 1:
a) A = 210+211+212
=210*(1+21+22)
=210*(1+2+4)
=7*210 chia hết 7
Đpcm
b)7*32=244
=32+64+128
=25+26+27
Bài 2:
a)ko hiểu đề
b)nhân N với * x như dạng lp 6 âý
cho M= 1+3+3^2+3^3+......+3^118+3^119
cmr: M chia hết cho 13
\(M=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{117}+3^{118}+3^{119}\right)\)
\(=13+3^3.\left(1+3+3^2\right)+...+3^{117}.\left(1+3+3^2\right)\)
\(=13+3^3.13+...+3^{117}.13\)
\(=13.\left(1+3^3+...+3^{117}\right)\text{chia hết cho 13}\)
=> M chia hết cho 13 (Đpcm).
sao bạn thì trả lời ko biết mà tích vào
CMR: 1+42+43+.....+4118+4119 chia hết cho 5;21
a/ A=20+21+22+.....+299+2100
=>2A=20.2+21.2+22.2+.....+299.2+2100.2=21+22+.....+2100+2101
=>2A-A=(21+22+.....+2100+2101)-(20+21+22+.....+299+2100)
=>A=2^101-1<B
b/C=2+22+23+......+2300
=>2C=21.2+22.2+.....+2299.2+2300.2=22+23+.....+2300+2301
=>2C-C=(22+23+.....+2300+2301)-(2+22+23+......+2300)
=>C=2^301-1<B
CMR: 1+42+43+.....+4118+4119 chia hết cho 5;21
a) Cho A = 119 + 118 + 117 +…+11 + 1. Chứng minh rằng A ⋮ 5
b) Chứng minh rằng với mọi số tự nhiên n thì n2 + n + 1 không chia hết cho 4.
\(a,A=\dfrac{\left(119+1\right)\left(119-1+1\right)}{2}=\dfrac{120\cdot119}{2}=60\cdot\dfrac{119}{2}⋮5\\ b,n^2+n+1=n\left(n+1\right)+1\)
Vì \(n\left(n+1\right)\) là tích 2 số tự nhiên lt nên \(n\left(n+1\right)\) chẵn
Do đó \(n\left(n+1\right)+1\) lẻ
Vậy \(n^2+n+1⋮̸4\)
a) chịu
b) n2 + n + 1= n3 + 1(ơ, n=1 đc mà)
A = 119 +118 +117 +... +11+1. Chứng minh rằng A chia hết cho 5
B = 2 + 22 + 23 +... + 260 . Chứng minh rằng B chia hết cho 7 và 15
C = 3 + 33 + 35 +... + 31991 . Chứng minh rằng C chia hết cho 13 và 41
mình cần gấp giúp mình với
giúp mình với mình chuẩn bị phải nộp bài rồi T~T
\(B=2+2^2+2^3+...+2^{60}\)
\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{58}\right)⋮7\)
1, CMR:
(32^4n+1) + (23^4n+1)+5 chia hết cho 11 với mọi STN n
2,CMR:
a, 220119^69+11969^220+69220^119 chia hết cho 11
b, 22^6n+3 chia hết cho 19 (n là STN)
c, 22^2n+1+3 chia hết cho 7 (n là STN)
d, 22^10n+1+19 là hợp số (n là STN)
3, TÌm SNT p sao cho: 2p+1 chia hết cho p
1, cmr Với mọi x thuộc N luôn có: A(x)=46^x+296.13^x chia hết cho 1947
2,cmr A=220^119^69+119^69^220+69^220^119 chia hết cho 102
B=1890^1930+1945^1975+1 chia hết cho 7
3,cmr:
a,12^2n+1+11^n+2 chia hết cho 133
b,7.5^2n+12.6^n chia hết cho19
c,2.7^n+1 chia hết cho 3
d,21^2n+1+17^2n+1+19 chia hết cho19
e,9^n-1 chia hết cho 4