Những câu hỏi liên quan
H24
Xem chi tiết
HK
Xem chi tiết
HL
Xem chi tiết
NH
9 tháng 2 2018 lúc 20:54

a) (n mũ 2+n) chia hết cho 2 

=> n mũ 2 +n thuộc Ư(2), tự tìm ước của 2

Bình luận (0)
H24
9 tháng 2 2018 lúc 20:51

\(n^2+n=n\left(n+1\right)\)

Vì n(n+1) là tích 2 số nguyên liên tiếp nên chia hết cho 2 => đpcm

Bình luận (0)
H24
9 tháng 2 2018 lúc 20:53

\(n^2+n+3=n\left(n+1\right)+3\)

Vì n(n+1) chia hết cho 2 => số cuối là số chẵn => n(n+1) + 3 có số cuối là số lẻ 

Vậy n^2+n+3 ko chia hết cho 2

Bình luận (0)
PM
Xem chi tiết
H24
19 tháng 10 2015 lúc 5:33

Bài 2 : 

Ta có : 9x + 5y và 17x + 17y chia hết cho 17 

=> ( 17x + 17y ) - ( 9x + 5y ) chia hết cho 17

=> 8x + 12y chia hết cho 17

=> 4.(2x+3y) chia hết cho 17

Mà (4;17) = 1 nên 2x + 3y chia hết cho 17

=> đpcm

Bình luận (0)
CT
Xem chi tiết
CT
28 tháng 12 2016 lúc 7:43

a, Gói 5 số tự nhiên liên tiếp là a,á+1,a+2.a+3.a+4(a thuộc N)

+Nếu a chia hết cho 5 , bài toán giải xong

+ Nếu a chia 5 dư 1, đặt a=5b+1(b thuộc N ) ta có a+4=5b+1+4=(5b+5) chia hết cho 5

+ Nếu a chia 5 dư 2, đặt a=5c+2 (c thuộc N) ta có a+3=5c+2+3=(5c+5) chia hết cho 5

+ Nếu a chia 5 dư 3 , đặt a=5d+3(d thuộc N) ta có a+2=5đ +3+2=(5d+5) chia hết cho5

+ Nếu a chia 5 dư 3, đặt a= 5e +4 ( e thuốc N ) ta có  a+1=5e+4+1=(5e+5) chia hết cho 5

Vậy trong 5 số tự nhiên liên tiếp, có một số chia hết  cho 5

b, 19 m+19m+1,19m+2,19m+3,19m+4 là 5 số tự nhiên liên tiếp nên theo câu a có 1 số chia hết cho 5 ma 19m ko chia hết cho 5 với mọi m thuộc N 

do đó : 19m+1,19m+2,19m+3,19m+4 có 1 số chia hết cho 5

=>(19m+1);(19m+2) (19m+3), (19m+4) chia hết cho 5

Bình luận (0)
DM
28 tháng 12 2016 lúc 7:52

bài này mình chụi

Bình luận (0)
DC
Xem chi tiết
MA
Xem chi tiết
AH
9 tháng 12 2023 lúc 17:38

M a b a b 9 11 7 là như thế nào vậy bạn? Bạn cần viết rõ để mọi người hiểu đề của bạn hơn.

Bình luận (0)
NA
Xem chi tiết
NU
27 tháng 2 2020 lúc 12:38

a, gọi 3 số tự nhiên liên tiếp là a;a+1;a+2 (a thuộc N)

+ xét a chia hết cho 3 (đpcm)

+ xét a chia 3 dư 1 => a = 3k + 1      

=> a +  2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) chia hết cho 3

+ xét a chia 3 dư 2 => a = 3k + 2

=> a + 1 = 3k + 2 + 1 = 3k + 3 = 3(k + 1) chia hết cho 3

vậy trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3

b, đề không rõ lắm

Bình luận (0)
 Khách vãng lai đã xóa
TL
27 tháng 2 2020 lúc 12:43

Ta có: \(17^n;17^n+1;17^n+2\) là 3 số nguyên liên tiếp nên luôn có 1 số chia hết cho 3

\(\Rightarrow17^n\left(17^n+1\right)\left(17^n+2\right)⋮3\)

\(\Rightarrow\left(17^n+1\right)\left(17^n+2\right)⋮3\left(17^n⋮̸3\right)\)

=> A \(⋮3\left(ĐPCM\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
LV
Xem chi tiết