Xác định m để phương trình bậc 3 là
6x3-7x2-16x+m=0 có một nghiệm là 2. Tìm các nghiệm còn lại
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho phương trình (2m−5)x2 −2(m−1)x+3=0 (1); với m là tham số thực
1) Tìm m để phương trình (1) có một nghiệm bằng 2, tìm nghiệm còn lại.
3) Tìm giá trị của m để phương trình đã cho có nghiệm
4) Xác định các giá trị nguyên của để phương trình đã cho có hai nghiệm phân biệt đều nguyên dương
1) điều kiện của m: m khác 5/2
thế x=2 vào pt1 ta đc:
(2m-5)*4 - 4(m-1)+3=0 <=> 8m-20-4m+4+3=0<=> 4m = 13 <=> m=13/4 (nhận)
lập △'=[-(m-1)]2-*(2m-5)*3 = (m-4)2
vì (m-4)2 ≥ 0 nên phương trình có nghiệm kép => x1= x2 =2
3) vì △'≥0 với mọi m nên phương trình đã cho có nghiệm với mọi m
Cho phương trình (ẩn x): \(x^3+ax^2-4x-4=0\)
a, Xác định m để phương trình có một nghiệm x=1
b, Với giá trị m vừa tìm được , tìm các nghiệm còn lại của phương trình
Cho phương trình ( ẩn x): \(x^3-\left(m^2-m+7\right)x-3\left(m^2-m-2\right)=0\)
a, Xác định a để phương trình có một nghiệm x=-2
b, Với giá trị a vừa tìm được, tìm các nghiệm còn lại của phương trình
bài 4 cho phương trình \(x^3-x^2-9x-9m=0\) trong đó m là một số cho trước .
a,xác định n để phương trình có một nghiệm x=3
b,với giá trị của m vừa tìm được,tìm các nghiệm còn lại của phương trình
bài 5 cho phương trình (ẩn x):\(x^3-\left(m^2-m+7\right)x-3\left(m^2-m-2\right)=0\)
a,xác định a để phương trình có một nghiệm x=-2
b,với giá trị của a vừa tìm được,tìm các nghiệm còn lại của phương trình
`B4:`
`a)` Thay `x=3` vào ptr:
`3^3-3^2-9.3-9m=0<=>m=-1`
`b)` Thay `m=-1` vào ptr có: `x^3-x^2-9x+9=0`
`<=>x^2(x-1)-9(x-1)=0`
`<=>(x-1)(x-3)(x+3)=0<=>[(x=1),(x=+-3):}`
`B5:`
`a)` Thay `x=-2` vào có: `(-2)^3-(m^2-m+7).(-2)-3(m^2-m-2)=0`
`<=>-8+2m^2-2m+14-3m^2+3m+6=0`
`<=>-m^2+m+12=0<=>(m-4)(m+3)=0<=>[(m=4),(m=-3):}`
`b)`
`@` Với `m=4` có: `x^3-(4^2-4+7)x-3(4^2-4-2)=0`
`<=>x^3-19x-30=0`
`<=>x^3-5x^2+5x^2-25x+6x-30=0`
`<=>(x-5)(x^2+5x+6)=0`
`<=>(x-5)(x+2)(x+3)=0<=>[(x=5),(x=-2),(x=-3):}`
`@` Với `m=-3` có: `x^3-[(-3)^2-(-3)+7]x-3[(-3)^2-(-3)-2]=0`
`<=>x^3-19x-30=0<=>[(x=5),(x=-2),(x=-3):}`
xác định số hạng tự do m của phương trình 6x3-7x2-16x+m=0 nếu phương trình có 1 nghiệm bằng 2. tính các nghiệm còn lại
giúp mk với mn
Thay x = 2 vào phương trình, ta được:
\(6.2^3-7.2^2-16.2+m=0\)
\(\Leftrightarrow6.8-7.4-32+m=0\)
\(\Leftrightarrow48-28-32+m=0\)
\(\Leftrightarrow20-32+m=0\)
\(\Leftrightarrow-12+m=0\)
\(\Leftrightarrow m=12\)
Vậy m = 12 thì pt có 1 nghiệm bằng 12.
Lúc đó phương trình trở thành \(6x^3-7x^2-16x+12=0\)
\(\Leftrightarrow6x^3-3x^2-4x^2-18x+2x+12=0\)
\(\Leftrightarrow\left(6x^3-3x^2-18x\right)-\left(4x^2-2x-12\right)=0\)
\(\Leftrightarrow3x\left(2x^2-x-6\right)-2\left(2x^2-x-6\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(2x^2-x-6\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(x-2\right)\left(2x+3\right)=0\)
Vậy các nghiệm còn lại là \(\frac{2}{3};\frac{-3}{2}\)
Cho phương trình x2- 2(m - 1)x - 3 = 0 (m là tham số)
a) Xác định m để phương trình có một nghiệm bằng -2. Tìm nghiệm còn lại.
b) Gọi x1 và x2 là hai nghiệm của phương trình đã cho. Tìm giá trị lớn nhất của biểu thức Q = x13x2 + x1x23- 5x1x2
a)
\(x=-2\) là nghiệm của phương trình
\(\Rightarrow\left(-2\right)^2-\left(-2\right).\left(m-1\right).\left(-2\right)-3=0\)
\(\Leftrightarrow4+4\left(m-1\right)-3=0\)
\(\Leftrightarrow4\left(m-1\right)=-1\)
\(\Leftrightarrow m-1=-\dfrac{1}{4}\)
\(\Leftrightarrow m=\dfrac{3}{4}\)
\(x^2-2\left(m-1\right)x-3=0\)
\(\Leftrightarrow x^2+\dfrac{1}{2}x-3=0\)
\(\Leftrightarrow2x^2+x-6=0\)
\(\Leftrightarrow\left(x+2\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{2}\end{matrix}\right.\)
b)
\(\Delta'=\left(m-1\right)^2+12x>0\forall m\)
\(\Rightarrow\) Phương trình luôn có 2 nghiệm phân biệt
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3\end{matrix}\right.\)
Có:
\(Q=x_1^3x_2+x_1x_2^3-5x_1x_2\)
\(=x_1x_2.\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-5x_1x_2\)
\(=-3\left[4\left(m-1\right)^2+6\right]+15\)
\(=-12\left(m-1\right)^2-3\)
Mà \(-12\left(m-1\right)^2\le0\)
\(\Rightarrow-12\left(m-1\right)^2-3\le-3\)
\(Max_Q=-3\Leftrightarrow m-1=0\Leftrightarrow m=1\).
`a)` Thay `x=-2` vào ptr có:
`(-2)^2-2(m-1).(-2)-3=0<=>m=3/4`
Thay `m=3/4` vào ptr có: `x^2-2(3/4-1)x-3=0<=>x^2+1/2x-3=0`
`<=>2x^2+x-6=0<=>(x+2)(2x-3)=0<=>[(x=-2),(x=3/2):}`
`b)` Ptr có nghiệm `<=>\Delta' >= 0`
`<=>[-(m-1)]^2+3 >= 0<=>(m-1)^2+3 >= 0` (LĐ `AA m`)
`=>` Áp dụng Viét có: `{(x_1+x_2=[-b]/a=2m-2),(x_1 .x_2=c/a=-3):}`
Có:`Q=x_1 ^3 x_2+x_1 x_2 ^3 -5x_1 x_2`
`<=>Q=x_1 x_2(x_1 ^2+x_2 ^2)-5x_1 x_2`
`<=>Q=x_1 x_2[(x_1+x_2)^2-2x_1 x_2]-5x_1 x_2`
`<=>Q=-3[(2m-2)^2-2.(-3)]-5.(-3)`
`<=>Q=-3(2m-2)^2-18+15`
`<=>Q=-3(2m-2)^2-3`
Vì `-3(2m-2)^2 <= 0<=>-3(2m-2)^2-3 <= -3 AA m`
`=>Q <= -3 AA m`
Dấu "`=`" xảy ra `<=>2m-2=0<=>m=1`
Vậy GTLN của `Q` là `-3` khi `m=1`
Cho phương trình: x^2 -2(m+1)x-4m=0
a. xác định m để phương trình có nghiệm kép?
b. Xác định m để phương trình có một nghiệm bằng 4? Tìm nghiệm còn lại
c. Với điều kiện nào của m thì phương trình có nghiệm cũng cùng dấu hoặc nghiệm kép
Cho phương trình (ẩn x): x3 – (m2 – m + 7)x – 3(m2 – m – 2) = 0
a) Xác định a để phương trình có một nghiệm x = – 2.
b) Với giá trị a vừa tìm được, tìm các nghiệm còn lại của phương trình
Cho phương trình (ẩn x): x3 – (m2 – m + 7)x – 3(m2 – m – 2) = 0
a) Xác định a để phương trình có một nghiệm x = – 2.
b) Với giá trị a vừa tìm được, tìm các nghiệm còn lại của phương trình.